繁体中文

Petrobras will use laser beams to measure wind speed and direction

124
2023-10-24 17:10:48
查看翻譯

Petrobras announced last week that it plans to use laser beams to measure wind speed and direction. The idea is that these data will be used to improve the operation of the wind turbines maintained by this state-owned company in North Rio Grande do.

The total investment of the 2.0 version of this device reaches R $11.3 million, known as the offshore wind assessment remote buoy.
This technology can also capture meteorological variables such as atmospheric pressure, temperature, and relative humidity. In addition to oceanographic variables such as waves and currents. All of these data are crucial for determining the potential for wind energy production in a region.

We expect Bravo 2.0 to meet the needs of Petrobras for measuring the potential of offshore wind power in Brazil. This is an important lever for us to promote this new energy, "Carlos Travassos, Director of Engineering, Technology, and Innovation at Petrobras, said in a statement.

The working principle of Bravo 2.0 and how to measure wind
The equipment weighs 7 tons, has a diameter of 4 meters, a height of 4 meters, and is powered by solar modules. In the new version, an algorithm specifically created for this project corrects the collected information based on positional changes caused by waves and currents.

Bravo 2.0 has also been expanded to accommodate two LiDAR sensors instead of one. This type of remote sensor measures the properties of reflected light and allows you to estimate the distance to the object. This improves the collection of data transmitted via satellite to cloud servers for later analysis.

Bravo 2.0 will be launched 20 kilometers from the coast of Rio Grande do Nord, with the support of the Brazilian Navy and the Intersal consortium operating the Black Salanca Salt Terminal.

The testing and measurement activities will continue until March 2024. The information collected by the buoy will be compared with the reference data captured by a fixed LiDAR installed in the same terminal. The idea is to verify the functionality and reliability of equipment measurements.

Source: Laser Network

相關推薦
  • Chinese researchers have developed for the first time a room temperature HoYLF thin film laser

    In a study published in Optics Express, the research team led by Professor Fu Yuxi of the Xi'an Institute of Optics and Precision Mechanics (XIOPM) of the Chinese Academy of Sciences developed the room temperature holmium doped lithium yttrium fluoride (Ho: YLF) composite thin slice laser for the first time, which can achieve high efficiency and high-quality CW laser output.Laser devices operating...

    02-21
    查看翻譯
  • First time! Significant progress has been made in low repetition rate fully polarization maintaining nine cavity fiber lasers

    Recently, the research team of the Aerospace Laser Technology and System Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, reported for the first time a low repetition frequency full polarization maintaining 9-shaped cavity fiber laser at 915 nm. The relevant research results were published in Optics Express under the title "Low repetition rate 915 nm ...

    2024-05-07
    查看翻譯
  • AMC Theatres launches advanced laser projection technology upgrades

    AMC Cinema has long been known as the largest cinema operator in the United States and the world, and has completed upgrades to almost all its venues in the broader Chicago area, including advanced laser projection technology.The technological reform of this chain of stores has made Chicago one of the first areas in AMC's footprint to benefit from CinIonic's cutting-edge projection technology.In e...

    2023-12-23
    查看翻譯
  • New discoveries bring progress in photon calculation

    International researchers led by Philip Walther from the University of Vienna have made significant breakthroughs in the field of quantum technology, successfully demonstrating quantum interference between multiple single photons using a new resource-saving platform. This work, published in Science Advances, represents a significant advancement in the field of quantum computing and paves the way f...

    2024-04-27
    查看翻譯
  • Dr. Gu Bo, a renowned expert in the laser industry, has been elected as a member of the Canadian Academy of Engineering

    On May 7, 2024, the official website of the Canadian Academy of Engineering announced that Dr. Gu Bo, a renowned expert in the laser industry, has been elected as a member of the Canadian Academy of Engineering.Dr. Gu BoAcademician of the Canadian Academy of EngineeringFounder/President of Bose Photonics, USADr. Gu Bo is recognized as a pioneer and academic leader in the global field of fiber lase...

    2024-05-07
    查看翻譯