繁体中文

QBeam launches innovative window ablation laser system to achieve free space optical communication

142
2024-02-15 11:40:33
查看翻譯

QBeam is a leader in developing breakthrough optical products and announced today that its handheld laser ablation equipment is fully launched for free space optical communication in indoor office locations. The qBeam window ablation laser allows for the installation of optical communication terminals indoors by treating windows that otherwise block the infrared beams of the terminals.

Commercial buildings use energy-saving windows to reduce the operating costs of HVAC systems. These windows include low radiation coatings that can block infrared wavelengths, thereby limiting the escape of heat to the outside. Unfortunately, the Low-E coating also excludes the possibility of operating optical communication equipment indoors.

The handheld device of qBeam uses a laser beam to form a small "opening" on the Low-E coating, allowing infrared energy to pass through with minimal attenuation. This has led to significant improvements in the transmission of free space optical communication.

The portable laser system includes a variable depth of focus function to accommodate most commercial windows and can create approximately 4 inches x 4 inches of "openings" without repositioning the device. Larger openings require multiple applications. This process is permanent and can be applied within a few minutes.

The window ablation laser equipment supplements qBeam's existing FSOC modem product line by being installed in more locations. The qBeam FSOC modem released in 2023 provides a low-cost fiber optic solution alternative for ground networks when paired with compatible optical terminals. In the past, free space optical devices were unable to obtain traction because traditional FSOC modems did not fully consider the impact of atmospheric turbulence.

The working mode of qBeam FSOC modems is different. It includes forward error correction function and fade out mode, which can provide end-to-end protection for transmitted data. Therefore, compared to traditional systems, qBeam FSOC modems support longer ranges and higher data rates, providing unparalleled stability, reliability, and performance.

The plug and play qBeam FSOC modem can seamlessly integrate with existing optical terminals to quickly provide these and other advantages to existing infrastructure. It is suitable for traditional Gigabit Ethernet networks and supports GigE and 2.5 GigE client connections through standard RJ-45 or SFP+interfaces. QBeam is actively seeking relationships with optical terminal manufacturers to enable customers to easily and quickly deploy more comprehensive FSOC solutions. QBeam plans to release optical terminals by the end of 2024.

"For a long time, optical communication has been impacted by untapped potential, posing various unsatisfactory choices for governments and commercial entities to best support their ground and ground to air communication needs," he said, referring to Eugene Ishinto, President and CEO of qBeam. "Our innovative FSOC modem and window ablation system unleashes this potential through eye-catching and easy-to-use products that can immediately provide value to our customers and change the landscape."

QBeam was founded in 2014 and is headquartered in Lisburg, Virginia. It is dedicated to developing optical/laser products as well as simulation and modeling software for communication links. The company designs and manufactures innovative free space optical modems, multispectral infrared cameras, laser etching/ablation systems, and optical ranging simulators. It also developed an Embed/Comm physical layer communication simulation software plugin.

Source: Laser Net

相關推薦
  • Bitsensing, a South Korean LiDAR solution provider, successfully raised 180 million yuan in funding

    Recently, Bitsensing, a leading provider of advanced radar solutions in South Korea, announced the successful completion of Series B financing, with a financing amount of up to $25 million (approximately RMB 181.6 million).This major investment is led by a series of well-known venture capital firms and strategic investors, which not only demonstrates Bitsensing's leading position in the radar tech...

    2024-06-27
    查看翻譯
  • Germany Developed Short Wave Green Laser Underwater Cutting Technology

    With the prominent energy issues in various countries around the world, the utilization and development of energy have become a hot topic, and the demand for renewable energy is constantly increasing. The existing underwater infrastructure is no longer sufficient and needs to be dismantled using appropriate modern technology. For example, in order to increase the power of offshore wind power plant...

    2023-09-18
    查看翻譯
  • Chinese University of Science and Technology Reveals a New Physical Mechanism of Photoinduced Particle Rotation

    Light has angular momentum properties. Circularly polarized or elliptically polarized beams carry spin angular momentum (SAM), while beams with helical phase wavefronts carry orbital angular momentum (OAM). During the interaction between light and particles, the transfer of angular momentum can generate optical torque, driving particles to rotate. Among them, the transfer of optical spin angular m...

    2024-06-25
    查看翻譯
  • The breakthrough of coherent two-photon lidar overcomes distance limitations

    Schematic diagram of experimental setupNew research has revealed advances in light detection and ranging technology, providing unparalleled sensitivity and accuracy in measuring the distance of distant objects.This study was published in the Physical Review Letters and was the result of a collaboration between Professor Yoon Ho Kim's team at POSTECH in South Korea and the Center for Quantum Scienc...

    2023-12-08
    查看翻譯
  • Laser surface treatment of Ti6Al4V alloy: finite element prediction of melt pool morphology and microstructure evolution

    Researchers from the University of Calabria, University of Salento, and LUM University in Italy have reported on the progress of finite element prediction research on laser surface treatment of Ti6Al4V alloy: melt pool morphology and microstructure evolution. The related research was published in The International Journal of Advanced Manufacturing Technology under the title "Laser surface treatmen...

    04-10
    查看翻譯