繁体中文

Scientists have developed the most powerful ultraviolet laser using LBO crystals

100
2024-04-07 16:08:19
查看翻譯

It is reported that recently researchers from the Chinese Academy of Sciences have achieved the highest power output of 193 nm and 221 nm lasers using lithium borate (LBO) crystals. This achievement lays the foundation for the further application of the laser in deep ultraviolet (DUV) spectroscopy.
The laser in DUV spectroscopy has many applications in science and technology, such as defect detection, spectroscopy, lithography, and metrology. Traditionally, argon fluoride (ArF) lasers have been used to generate high-power 193nm lasers for applications such as lithography.
Other applications of DUV lasers include the production of microelectronic devices, semiconductor integrated circuits, and medical applications for ophthalmic surgeries. In these applications, it is commonly referred to as an excimer laser.

However, these lasers are not completely coherent and therefore cannot be used for more sensitive applications such as interferometric lithography, where fine features must be printed in the form of arrays. Such precise applications require more coherent lasers, which provides an opportunity for researchers to manufacture hybrid excimer lasers.

What is a hybrid excimer laser?
In order to achieve coherence requirements, scientists have been considering using solid-state seeds instead of gas (ArF) oscillators to make them hybrid lasers. In addition to improving coherence, this design also aims to increase the photon energy of the laser, so that it can even be used with carbon compounds with minimal thermal impact.

To achieve this goal, the linewidth of the 193nm seed laser needs to be maintained below 4 GHz. The statement states that this is the coherence length crucial for interference seen through the use of currently available solid-state laser technology.

What achievements have been made on DUV lasers?
Researchers from the Chinese Academy of Sciences have achieved the same linewidth as the 193 nm hybrid excimer laser by using LBO crystals. In their device, researchers used a complex two-stage and frequency generation process to achieve a laser output of 60 milliwatts (60 megawatts).
The device includes two lasers, one at 258 nanometers and the other at 1553 nanometers. These lasers come from ytterbium hybrid lasers and erbium-doped fiber lasers, ultimately forming 2mm x 2mm x 30mm Yb: YAG bulk crystals to provide the required laser output.

The resulting DUV laser pulse has a duration of 4.6 nanoseconds (ns), a repetition rate of 6 kHz, and a linewidth of approximately 640 MHz.
It is worth noting that the output power of the 193nm laser and its accompanying 221nm laser is 60mW, which is the highest power generated using LBO crystals.

The conversion efficiency of 221-193nm is 27%, and the conversion efficiency of 258-193nm is 3%, setting a new benchmark.
This study demonstrates the feasibility of using solid-state lasers to pump LBO, which can reliably and effectively generate 193nm narrow linewidth lasers, and opens up a new path for manufacturing cost-effective high-power DUV laser systems using LBO
Therefore, researchers believe that LBO crystals can be used to generate more DUV lasers, with output powers ranging from a few milliwatts to a few watts, opening up further avenues for these wavelengths.
This research result is published in the journal Advanced Photonic Nexus.

Source: OFweek

相關推薦
  • Additive Manufacturing Software Market 2025: Analysis, Data, and Forecasting

    In March 2025, Additive Manufacturing Research (AMR) released its latest 3D printing market research report, "AM Software Markets 2025: Analysis, Data, and Forecast," which provides a comprehensive and in-depth analysis of the 3D printing software industry. The latest research findings indicate that global revenue from additive manufacturing (AM) software is expected to grow from $2.44 billion in ...

    03-17
    查看翻譯
  • Stable lasers developed with mixed materials focus on autonomous vehicle, etc

    Researchers printed microscale lenses directly onto optical fibers, allowing them to tightly combine the fibers and laser crystals into a single laser oscillator.Scientists have used 3D printing polymers in new micro optical technology, which can reduce the size of lasers and be used in various new applications, including the laser radar system for autonomous vehicle technology and cancer treatmen...

    2024-01-22
    查看翻譯
  • Chinese researchers have developed for the first time a room temperature HoYLF thin film laser

    In a study published in Optics Express, the research team led by Professor Fu Yuxi of the Xi'an Institute of Optics and Precision Mechanics (XIOPM) of the Chinese Academy of Sciences developed the room temperature holmium doped lithium yttrium fluoride (Ho: YLF) composite thin slice laser for the first time, which can achieve high efficiency and high-quality CW laser output.Laser devices operating...

    02-21
    查看翻譯
  • The official launch of FV4000 and FV4000MPE microscopes aims to redefine scientific imaging

    Introduction to FLUOVIEW ™ The FV4000 confocal laser scanning microscope and FV4000MPE multiphoton laser scanning microscope have made breakthroughs in imaging technology, enabling researchers to make new scientific discoveries. The FV4000 and FV4000MPE microscopes aim to redefine scientific imaging, providing higher accuracy, lower noise, and higher sensitivity, setting new standards for im...

    2023-11-03
    查看翻譯
  • Scientists are using lasers to create lunar paving blocks

    Original Hal Bowman 9000 Scientific RazorThe 3 kW laser power output on a 45 mm laser spot consolidates the interlocking structure within the EAC-1A powder bed. Source: Jens Kinst, BAMBy using lasers to melt lunar soil into stronger layered materials, it is possible to build paved roads and landing pads on the moon, according to a concept validation study in a scientific report. Although these exp...

    2023-10-14
    查看翻譯