繁体中文

The latest progress in laser chip manufacturing

122
2024-07-29 15:05:12
查看翻譯

Modern computer chips can construct nanoscale structures. So far, only these tiny structures can be formed on top of silicon chips, but now a new technology can create nanoscale structures in a layer beneath the surface. The inventor of this method stated that it has broad application prospects in the fields of photonics and electronics, and one day, people can manufacture 3D structures on the entire silicon wafer.

This technology relies on the fact that silicon is transparent to certain wavelengths of light. This means that a suitable laser can pass through the surface of the wafer and interact with the underlying silicon. However, designing a laser that can penetrate the surface without causing damage and can also perform precise nanoscale manufacturing underneath is not simple.

Researchers at Birkent University in Ankara, Türkiye, achieved this goal by using spatial light modulation to create needle shaped laser beams, so as to better control the distribution position of beam energy. By utilizing the physical interaction between laser and silicon, they are able to manufacture lines and planes with different optical properties, which can be combined to create nanophotonic elements beneath the surface.
The use of lasers for manufacturing inside silicon wafers is not a new phenomenon. But Onur Tokel, assistant professor of physics at the University of Kent who led the research, explained that so far, only micrometer scale structures have been produced. He said that extending this method to the nanoscale can unleash new capabilities, as it can create features that are comparable in size to the wavelength of the incident light. When this happens, these structures exhibit a range of novel optical behaviors, which makes it possible to manufacture metamaterials and metasurfaces, among other things.

Silicon is the cornerstone of electronics, photonics, and photovoltaic technology, "Tokel said. If we can introduce additional functionalities inside the nanoscale wafer to supplement these existing functionalities, it will bring a completely different paradigm. Now you can imagine doing things in volume, and even potentially in three-dimensional space. We believe this will open up exciting new directions.

Previous technologies were unable to manufacture at the nanoscale because once the laser enters the silicon, it scatters and it is difficult to deposit energy accurately. In a paper published in the journal Nature Communications, Tokel's team demonstrated that they can solve this problem by using a special laser called Bessel beam, which does not undergo diffraction. This means that lasers can counteract light scattering effects and maintain narrow focusing inside silicon, allowing for precise energy deposition.

When the laser is irradiated onto the wafer, tiny holes or gaps are generated in the area where the beam is focused. Tokel said that this situation has also occurred with previous methods, but the smaller gaps generated by the more tightly focused beam exhibit a "field enhancement" effect, resulting in an increase in laser intensity around them. This will change the silicon structure around the gap, further enhancing the enhancement effect and forming a self-sustaining feedback loop. The team also found that they can change the direction of field enhancement by altering the polarization of the laser.

The final result is to create a two-dimensional planar or linear structure with a minimum of 100 nanometers in the silicon wafer. The refractive index of these structures is different from the rest of the wafer, but Tokel stated that the composition of these structures is not yet fully understood. Based on previous research, he believes that the underlying crystal structure of silicon wafers may have been modified. He added that electron microscopy research should be able to clarify this in the future, but ultimately there is no need to understand the exact underlying properties of these structures to create useful nanophotonic components.

To demonstrate this, researchers have developed a nanoscale photonic device called a Bragg grating, which can be used as an optical filter. According to the team, this is the first functional nanoscale optical component completely buried in silicon.

Maxime Chambonneau, a researcher at the University of Jena in Germany, said that it is remarkable that researchers were able to achieve nanoscale features, as the relatively long laser pulses used by the Tokel team typically create large heat affected zones, leading to microscale variations. The Bilkent team uses pulses in nanoseconds, while other direct laser writing works traditionally involve picosecond or femtosecond lasers. Chambonneau suggests that creating features smaller than light waves could bring various possibilities, including improving the energy harvesting capability of solar cells.

Due to the fact that this manufacturing technology does not cause any changes to the wafer surface, Tokel stated that in the future, this technology can be used to manufacture multifunctional devices, with electronic components located on the surface and photonic components buried underneath. The team is still investigating whether this method can be used to carve microfluidic channels beneath the surface of chips. Tokel stated that pumping fluid through these channels can improve heat dissipation, thereby helping to cool electronic devices and make them run faster.

Tokel stated that the biggest limitation of this method is that researchers cannot precisely control the location of voids in specific areas. Currently, a small portion of voids are unevenly distributed in the area where the laser beam is focused. Tokel stated that if they could more accurately locate these voids, they could perform nanomachining in three-dimensional space, rather than simply producing lines or planes.
If you can individually control these things and distribute them like chains, then this will be very exciting in the future, "he added. Because in this way, you will have more control, which will make richer elements or systems possible.

Source: Semiconductor Industry Observation

相關推薦
  • Construction of Advanced New Laser Research Centers in American Universities

    The ATLAS R&D center is expected to be completed by mid-2026!A powerful new laser research facility located on the Foothills campus of Colorado State University will begin construction this month. The facility is planned to be put into use in mid-2026 and is the result of 40 years of laser development research at Colorado State University. It is a collaboration with the Fusion Energy Science P...

    2024-10-30
    查看翻譯
  • The LANL Laboratory in the United States has achieved a light source that generates a circularly polarized single photon stream using a quantum light emitter

    Los Alamos National Laboratory (LANL) has developed a method for a quantum light emitter that stacks two different atomically thin materials together to achieve a light source that produces a stream of circularly polarized single photons. These light sources can in turn be used for a variety of quantum information and communication applications.According to Los Alamos researcher Han Htoon, the wor...

    2023-09-02
    查看翻譯
  • Super-resolution fluorescence microscopy utilizes fluorescent probes and specific excitation and emission programs

    Super-resolution fluorescence microscopy surpasses the diffraction limit of what used to be a barrier by using fluorescent probes and specific excitation and emission programs. Most SR technologies heavily rely on image computation and processing to retrieve SR information. However, factors such as fluorescence group photophysics, chemical environment of the sample, and optical settings may cause ...

    2024-01-23
    查看翻譯
  • Snapmaker introduces new 20W and 40W laser modules

    Snapmaker has opened pre-orders for 20W and 40W laser modules, which are significant upgrades to the modules available on existing Snapmaker machines.Snapmaker says that with the 40W module installed, you will be able to cut 15 mm basswood plywood at a time at a speed of 20 mm/SEC. With 20W, you will cut 10mm at a rate of 10mm/SEC. That's a lot more than Artisan and Snapmaker 2.0 - both are comp...

    2023-08-04
    查看翻譯
  • Lameditech of South Korea was listed on the KOSDAQ exchange on the 17th

    On June 11, 2024, Korean laser medical equipment manufacturer Lameditech successfully completed its initial public offering and was listed on the KOSDAQ exchange on the 17th.Last month, its public offering price was fixed at 16000 Korean won. In this public offering, Lameditech issued a total of 1298000 shares, raising approximately 20.8 billion Korean won. Since Lameditech's debut on KOSDAQ, as o...

    2024-06-26
    查看翻譯