繁体中文

Using high-speed scanning remelting technology to achieve AlSi10Mg laser powder bed fusion with excellent strength and plasticity properties

306
2024-10-08 14:02:29
查看翻譯

The development of additive manufacturing (AM) has profoundly changed the manufacturing industry, and this technology has been applied in fields such as food, medicine, automotive, and electronic components. Especially in the aerospace field, where extremely lightweight and high-strength (~500mpa) components are required, aluminum alloy additive manufacturing is considered a very promising solution. Shuoqing Shi and others from the State Key Laboratory of Solidification Processing of Northwestern Polytechnical University found that the limited mechanical properties of aluminum silicon alloys hindered their application under harsh and extreme conditions. The cracking tendency of high-strength aluminum alloys and the high cost of rare earth elements pose challenges to the large-scale application of aluminum alloys in additive manufacturing. The new practical high-speed scanning remelting technology proposed in this study enables Al Si alloys to have a significant proportion of microstructure and nano precipitates, with strength (496.1 ± 5.8 MPa) and plasticity (21.4 ± 0.9%) superior to the mechanical properties of aluminum alloys prepared by conventional methods. This in-situ microstructure control method has opened up new avenues for applications in harsh engineering environments.

Figure 1: Microstructure of LPBF and LPBF-HSR samples. Band contrast (BC), inverse polarization (IPF), and GND distribution of samples (a-a2) (i-i2). (b) (j) PF images of (a1) and (i1) respectively. (c-d) (k-l) Equivalent grain diameter and aspect ratio. SEM images and aspect ratios of (e-f) (m-n) cellular substructures. (g-h) (o-p) SEM images and size distribution of precipitated nanoparticles.

Figure 2: Temperature field and solidification conditions of the molten pool. (a-b) are the longitudinal sections of the melt pool temperature field for LPBF and LPBF-HSR specimens, respectively. Comparative analysis of isothermal melting interface temperature gradient G, growth rate R, and cooling rate T between LPBF and LPBF-HSR samples (c-d). (e) Solidification diagrams of G and R values under LPBF and HSSR conditions.

Figure 3 Uniaxial tensile performance. (a) Representative engineering stress-strain (σ - ε) curves. (b) The mechanical properties of current LPBF-HSR samples are compared with those of LPBF, heat treatment (HT), laser directed energy deposition (LDED), magnetic field (MF) applications, remelting, composite materials, and high-strength aluminum alloys. (c) The comparison chart of real stress (σ t) and work hardening rate (Zeta) with real strain (ε t) is shown in detail in the attached figure. (d) The work hardening index (n) values at different strain stages.

Figure 4 LUR tensile test and fracture analysis. (a) The LUR tensile test results of two samples. (b) The evolution of σ flow, σ back, and σ eff during tensile testing. (c) The proportion of σ eff to total σ at different strain levels (σ eff/σ flow). IPF and TF images near the (d-d ') (g-g') tensile fracture. GNDs and BC images of the blue boxed regions in (e-e '), (h-h'), (d), and (g). (f) (i) SEM images of the blue boxed areas in (e) and (h), respectively. (j-l) Evolution of dislocations near the fracture surface under different strains.

In summary, HSSR technology is considered a breakthrough and practical method for in-situ modification of the microstructure and mechanical properties of LPBF alloys, with great potential for application. Increasing the proportion of equiaxed refined grains can significantly alleviate strain localization at MPBs in the sample, thereby delaying debonding and improving the ductility of the sample. Refining the crystal cell structure, increasing grain boundary density, and precipitating nanoparticles can effectively improve work hardening ability and ultimately enhance tensile strength. The influence of HSSR treated Al Si alloy on anisotropy, fracture toughness, and fatigue performance is a highly concerned issue in the aerospace field and deserves further exploration.

The relevant research results were published in Materials Research Letters (Volume 12, 2024 Issue 9) under the title "Achieving superior strength ductility performance in laser powder bed fusion of AlSi10Mg via high-speed scanning refining". The first author of the paper is Shuoqing Shi, and the corresponding author is Yufan Zhao.

Source: Yangtze River Delta Laser Alliance

相關推薦
  • Smaller laser facilities use new methods to break records before proton acceleration

    The Helmholtz Dresden Rosendorf Center (HZDR) has made significant progress in laser plasma acceleration. By adopting innovative methods, the research team successfully surpassed previous proton acceleration records significantly.They obtained energy for the first time that can only be achieved in larger facilities so far. As reported by the research team in the journal Nature Physics, promising a...

    2024-05-15
    查看翻譯
  • HGTECH Laser's New Product Debuts at the 2025 Munich Shanghai Light Expo

    New Product for Wafer Testing Probe Card Manufacturing Equipment Project This project adopts vision guided laser precision cutting to separate the probe from the crystal disk, and then generate a product mapping image for use in the next process. When picking up the probe, multi-point reference surface fitting technology is used to achieve non-contact probe suction and avoid force deformation. A...

    03-07
    查看翻譯
  • Electron beam welding process for thick steel plate of turbine at Aachen Institute of Technology in Germany

    Researchers from the Welding Research Institute of Aachen University of Technology in Germany reported on the development of a stable welding process for electron beam welding of thick plates used in the construction of offshore wind turbines. The relevant research results were published in Materials Science and Engineering Technology under the title "Development of a robust welding process for el...

    2024-07-09
    查看翻譯
  • The research team has solved decades long challenges in the field of microscopy

    When observing biological samples under a microscope, if the medium in which the objective lens is located is different from the sample, the light beam will be interfered with. For example, when observing a water sample with a lens surrounded by air, the light bends more strongly in the air around the lens than in water.This interference can cause the measured sample depth to be smaller than the a...

    2024-04-27
    查看翻譯
  • XTool enables pre-sale of F1 superfiber and diode laser cutting machines

    Tool has started pre-sales for the F1 Ultra, a 20 watt fiber and diode dual laser engraving machine. OEMs have stated that it is a win-win product and its so-called "flagship" model.Fiber lasers are mainly used for metal materials and usually work faster than diode lasers, but other materials have better performance when using diode lasers. F1 Ultra aims to bridge this gap by using a power of 20W ...

    2024-05-09
    查看翻譯