Deutsch

Wearable Breakthrough! A rubber like deformable energy storage device using laser precision manufacturing

128
2024-04-26 15:50:05
Übersetzung anzeigen

Recently, foreign researchers have made remarkable breakthroughs in the field of flexible energy storage devices, successfully developing a small energy storage device that can stretch, twist, fold, and wrinkle freely. This significant achievement has been published in the journal npj Flexible Electronics.

With the booming development of wearable technology, the demand for energy storage solutions that can adapt to the flexibility and stretchability of soft electronic devices is becoming increasingly urgent. Micro supercapacitors (MSCs) have become a highly promising deformable energy storage material due to their high power density, fast charging, and long cycle life.

However, the brittleness of traditional electrode materials such as gold (Au) poses a significant challenge in manufacturing cross electrode modes that can maintain stable performance through repeated stretching and twisting. At the same time, although eutectic gallium indium liquid metal (EGaIn) has attracted attention for its high conductivity and excellent deformability, its extremely high surface tension makes fine patterning operations exceptionally difficult.

Faced with these challenges, the research team demonstrated extraordinary innovative spirit. They cleverly utilized laser technology to accurately depict the fine patterns of EGaIn and graphene (as active materials) on stretchable polystyrene block copolymer (SEBS) substrates.

During the laser ablation process, the underlying SEBS substrate is intact and undamaged, ensuring the flexibility and durability of MSC devices. Excitingly, the surface capacitance of this new MSC can still maintain its original value after undergoing up to 1000 stretching cycles. What is even more remarkable is that these prepared MSCs can maintain stable operation under various mechanical deformations, such as stretching, folding, twisting, and wrinkling.

The research team brought together several outstanding scientists, including Professor Jin Kon Kim and Dr. Keon Woo Kim from the Department of Chemical Engineering at POSTECH, as well as Dr. Yang Chanwoo and Researcher Seong Ju Park from the Korea Institute of Industrial Technology (KITECH). Their joint efforts and wisdom have injected new vitality into the development of flexible energy storage.

Professor Jin Kon Kim is confident in this achievement, stating, "The application of laser patterned liquid metal electrodes marks an important step in the development of truly deformable energy storage solutions. With the continuous advancement of wearable technology, such innovation will play a crucial role in ensuring that our devices can adapt to dynamic lifestyles. We look forward to this technology bringing more convenient and efficient energy storage experiences to future wearable devices."

Source: OFweek

Ähnliche Empfehlungen
  • Progress made by the Precision Measurement Institute in Thorium Ion Trapping Research

    Recently, the Cold Molecular Ion Research Group of the Institute of Precision Measurement has made significant progress in the loading, trapping, and recognition of thorium ions. The related research results have been published as cover and selected articles in the international physics journal Journal of Applied Physics, titled "Loading and identifying variable charged thorium ions in a linear io...

    2024-06-21
    Übersetzung anzeigen
  • Super-resolution fluorescence microscopy utilizes fluorescent probes and specific excitation and emission programs

    Super-resolution fluorescence microscopy surpasses the diffraction limit of what used to be a barrier by using fluorescent probes and specific excitation and emission programs. Most SR technologies heavily rely on image computation and processing to retrieve SR information. However, factors such as fluorescence group photophysics, chemical environment of the sample, and optical settings may cause ...

    2024-01-23
    Übersetzung anzeigen
  • Multinational research team achieves breakthrough in diamond Raman laser oscillator

    Recently, the team led by Professor Lv Zhiwei and Professor Bai Zhenxu from Hebei University of Technology, in collaboration with Professor Richard Mildren from Macquarie University in Australia and Professor Takashige Omatsu from Chiba University in Japan, successfully achieved direct output of Raman vortex optical rotation with large wavelength extension in a diamond Raman laser oscillator. This...

    02-27
    Übersetzung anzeigen
  • Nanchang University research progresses in acoustic resolution photoacoustic microimaging enhancement

    As a promising imaging modality that combines the high spatial resolution of optical imaging and the deep tissue penetration ability of ultrasound imaging, photoacoustic microscopy (PAM) has attracted a lot of attention in the field of biomedical research, and has a wide range of applications in many fields, such as tumor detection, dermatology, and vascular morphology assessment. Depending on the...

    2024-09-18
    Übersetzung anzeigen
  • TDK introduces a new gold-wire-bonded optional NTC thermistor for laser diode temperature measurement

    TDK Corporation (TSE: 6762) announced the introduction of the new NTCWS series of NTC thermistors with gold wire bonding. These bonding NTC thermistors can be installed in packages via gold wire bonding to enable high precision temperature detection of laser diodes (LD) for optical communication. The series will begin mass production in September 2023.The use of LD devices in optical communication...

    2023-09-08
    Übersetzung anzeigen