Ελληνικά

German team develops and promotes laser technology for formable hybrid components

124
2023-08-16 14:52:32
Δείτε τη μετάφραση

Scientists from the Hanover Laser Center (LZH) in Germany are studying two laser based processes for producing load adapted hybrid solid components.

From a transaction perspective, mixing semi-finished products can help save materials and production costs, but if the components that need to be replaced are made of expensive materials, these materials need to meet high requirements in future use, such as being particularly wear-resistant.

To meet these requirements, the SFB 1153 "Customized Forming" collaborative research center in Hannover, Germany is developing a new process chain for producing mixed solid components that adapt to loads, where semi-finished products are first connected together and then formed as a whole. During this process, the German Hanover Laser Center (LZH) conducted two laser based process studies.

Process 1: Ultrasonic assisted laser beam welding

LZH's metal connection and cutting team has stated that they can use ultrasonic assisted laser beam welding technology to produce crack free and formable semi-finished products. This is the first of the two new laser processes mentioned above, with the specific sub project being A03 "Ultrasonic assisted laser welding to generate formable mixed compounds".

Scientists have welded shafts made of various mixed compounds, such as steel steel or steel nickel, and developed corresponding processes. In this development process, their focus is on how to avoid cracks and which parameters during the welding process will affect quality characteristics, such as weld depth or weld reinforcement.

In the third funding period of the collaborative research center, the team hopes to ensure higher process stability by modulating laser power and developing process control to achieve repeatable and reliable quality in the production of semi-finished products. In addition, the mechanical stress in the components will be reduced through ultrasonic post-treatment.

Process 2: Laser deposition welding

ZH's machine and control team is researching new components with local load adaptation characteristics, which is related to the second laser process - the specific sub project is A04 "Spatial adaptability of material properties for forming parts using surfacing technology to produce gradient mixed components".

To this end, scientists use laser hot wire deposition welding, using a costly and high-strength material as a coating, specifically for areas where components withstand high loads during operation. A typical application of this process is the tooth side of gears, where the user can obtain high-quality hard coatings, and the performance of the coatings is influenced by the specific material selection.

Next, the team hopes to develop process monitoring for deposition welding quality assurance. To achieve this, it is necessary to use special sensor technology to measure the secondary radiation generated during the welding process and analyze it using machine learning methods, in order to predict the coating performance. The purpose of these operations is to perform non-destructive quality control on the coating during the process.

The work of the Hanover Laser Center (LZH) in Germany is part of the SFB 1153 collaborative research center on the process chain for producing hybrid high-performance components through customized molding. In addition, researchers from 9 research institutes at the School of Mechanical Engineering at Leibniz University in Hanover and the Hanover Comprehensive Production Research Institute are also collaborating with them to develop new process chains for producing hybrid components.

Source: OFweek

Σχετικές προτάσεις
  • Magdalena Ridge expands the capacity of optical interferometers

    The Magdalena Ridge Observatory has purchased a second-generation off-axis beam compressor from Optical Surface, which will expand the functionality of the facility's optical interferometer.Interferometer is a research tool that combines two or more light sources to create interference patterns that can be measured and analyzed. In astronomy, interferometers combine the light collected by multiple...

    2024-01-05
    Δείτε τη μετάφραση
  • Multi functional materials for solar cells and organic light-emitting diodes to achieve high performance and stability

    Through joint research, a team developed a 4-amino-TEMPO derivative with photocatalytic performance and successfully used it to produce high-performance and stable fiber like dye sensitized solar cells (FDSSCs) and fiber like organic light-emitting diodes (FOLEDs). This paper was published in the journal Materials and Energy Today.The developed 4-amino-TEMPO derivatives have the characteristic of ...

    2024-06-03
    Δείτε τη μετάφραση
  • $75 million, this laser equipment manufacturer will be acquired

    Rocket Lab USA continues its path of vertical integration and has signed an exclusive but non binding agreement with MynaricAG, a German laser communication terminal (LCT) supplier and Rocket Lab supplier, to acquire the company for $75 million in cash or stock.If Mynaric achieves its revenue target, it will pay an additional revenue of up to $75 million. This acquisition depends on whether Myna...

    03-25
    Δείτε τη μετάφραση
  • The Application of Femtosecond Laser in Precision Photonics Manufacturing

    Femtosecond laser emits ultra short light pulses with a duration of less than 1 picosecond, reaching the femtosecond domain. The characteristics of femtosecond lasers are extremely short pulse width and high peak intensity.Ultra short blasting can minimize waste heat, ensure precise material processing, and minimize incidental damage. Their peak intensities can cause nonlinear optical interactions...

    2024-02-28
    Δείτε τη μετάφραση
  • Changchun Institute of Optics and Fine Mechanics has developed a high brightness HiBBEE non-uniform waveguide semiconductor laser

    High brightness semiconductor lasers have extremely important applications in fields such as laser radar. Traditional semiconductor lasers face challenges such as large vertical divergence angle, elliptical beam output, multiple lateral modes, and poor beam quality, which limit the direct application of high brightness semiconductor lasers.In response to this challenge, the team from the Bimberg S...

    03-18
    Δείτε τη μετάφραση