Ελληνικά

Researchers have discovered new multiphoton effects in quantum interference of light

143
2024-01-24 11:44:07
Δείτε τη μετάφραση

An international research team from Leibniz University in Hanover and Strathclyde University in Glasgow overturned the previous hypothesis about the influence of multiphoton components in the thermal field and the interference effect of parameterized single photons. The journal Physical Review Letters published the team's research.

"We have demonstrated through experiments that the interference effect between thermal light and parametric single photons can also lead to quantum interference with the background field. For this reason, the background cannot be simply ignored and subtracted from the calculation, as has been the case so far," said Professor Michael Kues, Director of the Institute of Photonics at Leibniz University in Hanover and member of the board of directors of the Phoenix D Excellence Cluster.

The leading scientist is doctoral student Anahita Khodadad Kashi, who is engaged in research on photon quantum information processing at the Institute of Photonics. She studied how the visibility of the so-called Hong Ou Mandel effect is affected by multiphoton pollution.

"Through our experiment, we have overturned the previously valid assumption that the multiphoton component only damages visibility and can therefore be subtracted from the calculation," said Khodadad Kashi. We have discovered a new fundamental feature that has not been considered in previous calculations. Our newly developed model can predict quantum interference, and we can measure this effect in experiments.

Scientists discovered their findings while conducting experiments in the laser laboratory. When they initially followed the original calculation method, they obtained negative results. "But the result is physically impossible," said Khodadad Kashi. The team started troubleshooting the experimental setup and computational model together.

"When the experimental results deviate significantly from expectations, scientists begin to question previous hypotheses and seek new explanations," Kuss said.

They jointly developed a new thermal field quantum interference theory, which uses parameterized single photons. Lucia Caspani, a quantum researcher at Strathclyde University in Glasgow, was the first to test this method. Next, Khodadad Kashi presented her theory and experimental results at an international conference, including the Photonics West held in San Francisco. There, she discussed her model with other scientists and obtained confirmation of her results.

Through new theories and experimental verification, Kues's team has made significant contributions to a better understanding of quantum phenomena. "These findings may be important for quantum key distribution, which is necessary for future secure communication, especially how to explain quantum interference effects to generate keys," said Khodadad Kashi.

However, many questions remain unanswered, Kues said. There is little research on the multiphoton effect, so a lot of work still needs to be done.

Source: Laser Net

Σχετικές προτάσεις
  • Ultra fast laser tracking the "ballistic" motion of electrons in graphene

    Figure 1. The setup of Hui Zhao and his team at the University of Kansas Ultra Fast Laser Laboratory.A team of researchers from the University of Kansas's ultrafast laser laboratory recently managed to capture real-time ballistic transmission of electrons in graphene, which could lead to faster, more powerful, and more energy-efficient electronic devices in the future.The motion of electrons is of...

    2024-01-09
    Δείτε τη μετάφραση
  • Multi functional materials for solar cells and organic light-emitting diodes to achieve high performance and stability

    Through joint research, a team developed a 4-amino-TEMPO derivative with photocatalytic performance and successfully used it to produce high-performance and stable fiber like dye sensitized solar cells (FDSSCs) and fiber like organic light-emitting diodes (FOLEDs). This paper was published in the journal Materials and Energy Today.The developed 4-amino-TEMPO derivatives have the characteristic of ...

    2024-06-03
    Δείτε τη μετάφραση
  • Received NASA contract! Breakthrough blue light laser technology leads the space power revolution

    On May 6th, NUBURU, a leading enterprise in high-power and high brightness industrial blue laser technology, announced that the company has been awarded a second phase contract worth $850000 by the National Aeronautics and Space Administration (NASA) to promote blue laser power transmission technology as a unique solution that significantly reduces the size and weight of equipment required for lun...

    2024-05-08
    Δείτε τη μετάφραση
  • Scientists demonstrate powerful UV-visible infrared full-spectrum laser

    Figure: a. Schematic diagram of the HCF-LN-CPPLN experimental setup. W. CaF? Window M, mirror.b. The bright white light circular spots emitted by the CPPLN sample.c. The first-order diffraction beam of B displays a colorful rainbow pattern from purple to red.d. The HCF-LN-CPPLN module generates normalized spectra of the output full spectrum laser signal through the second NL HHG and third NL SPM e...

    2023-08-25
    Δείτε τη μετάφραση
  • NUBURU Announces Second Next Generation Blue Laser Space Technology Contract with NASA

    NUBURU, the leading innovator of high-power and high brightness industrial blue laser technology, announced today that it has been awarded a second phase contract worth $850000 by the National Aeronautics and Space Administration (NASA) to advance blue laser power transmission technology as a unique solution that significantly reduces the size and weight of equipment required for lunar and Martian...

    2024-05-13
    Δείτε τη μετάφραση