Ελληνικά

MIT researchers have demonstrated a novel chip based resin 3D printer

135
2024-06-17 15:22:09
Δείτε τη μετάφραση

Researchers from the Massachusetts Institute of Technology and the University of Texas at Austin showcased the first chip based resin 3D printer. Their concept verification tool consists of a millimeter sized photon chip that emits a programmable beam of light into resin holes, which solidify into a solid structure when exposed to light.

The prototype processor does not have mobile components, but uses a series of small optical antennas to guide the beam of light. The beam is projected upwards into the liquid resin, which is carefully designed to quickly cure when exposed to the visible wavelength of the beam.
By integrating silicon photonics and photochemistry, interdisciplinary research teams can demonstrate a chip that can guide a beam of light to 3D print any two-dimensional design, including the letters M-I-T. The shape can be fully constructed within seconds.

Silicon Photonics and Special Resins
The Notaros group, which specializes in silicon photonics, has created an integrated optical phased array device that uses a microscale antenna on a chip to guide a beam of light. They can change the optical signals on both sides of the antenna array to control the beam of light. These systems are crucial for LiDAR sensors, which use infrared light to measure the surrounding environment. Recently, the group has shifted its focus to devices that generate and guide visible light for augmented reality applications.

Around the same time as they began brainstorming, the Page team at the University of Texas at Austin developed for the first time a specialized resin that could rapidly cure using visible light wavelengths. This is the missing part that makes chip based 3D printers a reality.
Corsetti added, "Here, we manufacture this chip based 3D printer by using visible light curing resin and visible light emitting chips, meeting between standard photochemistry and silicon photonics. You integrate the two technologies into a completely new idea.".

Chip based resin 3D printer
Their prototype consists of a photonic chip with a 160 nanometer optical antenna array. The thickness of a piece of paper is about 100000 nanometers. The entire chip is suitable for a quarter of the United States.

When driven by an off chip laser, the antenna guides the controllable visible beam into the holes of the photocured resin. The chip is located below a transparent glass slide, similar to the glass slide used in a microscope, which has a small depression that can capture resin. Researchers use electrical pulses to guide laser beams in a non mechanical manner, making the resin harden at any point of impact.

The Page team at the University of Texas at Austin works closely with the Notaros team at the Massachusetts Institute of Technology to fine tune chemical combinations and concentrations to achieve a formula with a long shelf life and solidification.
Finally, scientists have demonstrated that their prototype can 3D print any two-dimensional shape in just a few seconds.

expectation
In the long run, researchers envision a system where a photon chip is located at the bottom of a resin well and creates a 3D hologram of visible light, thereby solidifying a complete object in one step.
This type of portable 3D printer can have a wide range of applications, including allowing doctors to build customized medical device components and engineers to create rapid prototypes in the workplace.

This study received partial support from the National Science Foundation, the Defense Advanced Research Projects Agency, the Robert Welch Foundation, the MIT Rolf G. Rocher Endowment Scholarship, and the MIT Frederick and Barbara Croning Scholarship.

Source: Laser Net

Σχετικές προτάσεις
  • Industrial laser giant Coherent receives $33 million investment

    Recently, according to media reports, industrial laser giant Coherent has signed a "preliminary terms memorandum" with the US Department of Commerce, which will receive up to $33 million in investment under the Chip and Science Act.It is reported that the funds will mainly be used to support the modernization and expansion project of the cutting-edge manufacturing cleanroom in Coherent's existing ...

    2024-12-12
    Δείτε τη μετάφραση
  • LASER CHINA 2025 on-the-Spot, What New Technologies are Trending This Year?

    Every year, Shanghai is lit up with a “feast of light”, that is LASER World of PHOTONICS CHINA, which has lasted for 20 years and become an arena for global photoelectric enterprises to display and compete, instead of just an exhibition hall of devices. Chanelink team visited all these halls for laser technology, thoroughly learning the cutting-edge trends in photoelectric industry.As a technical...

    03-19
    Δείτε τη μετάφραση
  • Scientists build high-power cladding-pumped Raman fiber laser in 1.2 μm band

    Laser sources operating in the 1.2 μm band have some unique applications in photodynamic therapy, biomedical diagnostics, and oxygen sensing. In addition, they can be used as pump sources for mid-infrared optical parameter generation and visible light generation through frequency doubling.Laser generation in the 1.2 μm band has been achieved by different solid-state lasers, including semicon...

    2024-01-31
    Δείτε τη μετάφραση
  • Xi'an Institute of Optics and Fine Mechanics: New progress in large field two-photon scattering microscopy imaging technology

    Adaptive optics is a technique that improves imaging quality by correcting wavefront distortion. Interference focus sensing (IFS), as a new method proposed in the field of adaptive optics in recent years, has been proven to have significant effects in correcting complex aberrations in deep tissue imaging. This technology is based on measuring a single location within the sample to determine the ca...

    πριν 4 μέρες
    Δείτε τη μετάφραση
  • The acoustooptic modulation of gigawatt level laser pulses in ambient air can be applied to other optical components such as lenses and waveguides

    An interdisciplinary research group, including the German synchrotron radiation accelerator DESY and the Helmholtz Institute in Jena, Germany, reported that invisible gratings made of air not only are not damaged by lasers, but also maintain the original quality of the beam.The relevant research has been published in Nature Photonics under the title of "Acousto opt modulation of gigawatt scale las...

    2023-10-12
    Δείτε τη μετάφραση