Español

Progress has been made in the research of single shot characterization technology for complex combination laser pulses at Shanghai Institute of Optics and Fine Mechanics

103
2025-03-24 17:17:38
Ver traducción


Recently, the research team of the High Power Laser Physics Joint Laboratory at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made significant progress in the study of single shot characterization technology for complex combination laser pulses. The research team utilized an improved broadband transient grating frequency resolved optical switch technology (TG-FROG) to achieve complete characterization of complex high-power laser pulses in a single shot, and revealed the dynamic evolution law of ultra short pulses during nonlinear frequency conversion. The related research results were published in Optics Express under the title "Single shot complete characterization of synthesized laser pulses and non-linear frequency conversion process".

The combination of laser fields (pulse combinations with different polarizations, center wavelengths, or pulse widths) has important applications in fields such as ultrafast spectroscopy and high-order harmonic generation, but its precise measurement faces multiple challenges. Traditional methods are limited by polarization sensitivity, insufficient measurement bandwidth, or the need for multiple measurements, making it difficult to meet the real-time diagnostic requirements of high-power, low repetition rate laser systems. In addition, the dynamic characteristics of the nonlinear frequency transformation process of complex pulses lack effective observation methods, which restricts the optimization and application expansion of laser systems.

In response to the above challenges, the research team based on improved TG-FROG measurement technology, designed a self referencing and reflective structure with a wideband imaging spectrometer, to achieve single measurement support for at least 460nm spectral range, with a time resolution of 5.81 fs and spectral resolution better than 0.13 nm. The synchronous observation of waveform and spectral evolution of fundamental frequency pulses and second harmonic pulses during nonlinear frequency conversion has been achieved, revealing complex modulation effects such as spectral broadening, redshift, and time-domain multi peak structure under high-energy injection. And successfully measured the dual color pulse with spectral time-domain separation generated by the cascaded second harmonic process, and analyzed its time delay (208.4 fs) and relative phase (0.29 rad), breaking through the phase ambiguity limitation. This method not only provides a good measurement method for optimizing the waveform and contrast of ultra wideband laser pulses, but also provides a powerful diagnostic tool for complex nonlinear optical physical processes.

Figure 1 (a) Single broadband TG FROG device; (b) The process of broadband nonlinear frequency transformation and the experimental optical path diagram of dual pulse measurement.

Figure 2 TG-FROG synchronous measurement results of fundamental frequency pulse and second harmonic pulse during SHG process under high injection energy

Source: opticsky

Recomendaciones relacionadas
  • Blue Laser Fusion plans to commercialize nuclear fusion reactors using laser technology by 2030

    Recently, a start-up company co founded by Nobel laureate Hideyoshi Nakamura in San Francisco plans to commercialize nuclear fusion reactors using laser technology around 2030.Hideyoshi Nakamura won the 2014 Nobel Prize in Physics for inventing blue light-emitting diodes. He founded Blue Laser Fusion in Palo Alto, California in November 2022. Partners include Hiroaki Ohta, former CEO of drone manu...

    2023-08-21
    Ver traducción
  • Eurotech launches BestNet fiber rack mounting housing

    Fiber optic solution provider Eurotech announced the launch of a series of fiber optic rack mounting enclosures. The BestNet 19 inch top opening fiber optic interconnect unit is a fiber optic patch panel and cabinet, ideal for wiring, terminating, and managing fiber optic terminations, suitable for interconnect, cross connect, or splice applications in LAN environments. Modular fiber optic interco...

    2024-05-16
    Ver traducción
  • Probe organization of photoacoustic devices using low-cost laser diodes

    Photoacoustic technology provides a non-invasive method for detecting biological tissues, but its clinical application is limited, partly due to the large volume and high cost of laser sources. A compact PA sensing instrument powered by laser diodes for biomedical tissue diagnosis can provide clinical doctors with a practical and effective tool for evaluating breast diseases.By providing a cost-ef...

    2024-03-06
    Ver traducción
  • Breakthrough! Extending the lifespan of solar panels to 50 years using lasers

    Recently, the National Renewable Energy Laboratory (NREL) under the US Department of Energy has made a revolutionary breakthrough by developing a concept validation method aimed at completely removing polymers from solar panel manufacturing, thereby achieving more efficient and environmentally friendly recycling.Solar panels have always been praised for their recyclability. However, the thin plast...

    2024-04-30
    Ver traducción
  • Nikon launches COOLSHOT 20i GIII laser rangefinder with two measurement display modes: golf and actual distance

    Nikon Vision, a subsidiary of Nikon Corporation, is pleased to announce the launch of the COOLSHOT 20i GIII laser rangefinder for golfers, which is Nikon's small and lightweight model in the COOLSHOT series.While maintaining the lightweight and compact size of the COOLSHOT 20i GII, the new model notifies users through brief vibrations that the distance to the flagpole has been measured.When measur...

    2024-03-27
    Ver traducción