Español

Omnitron Announces Partnership with Silex Microsystems to Mass Produce MEMS Scanning Mirrors for LiDAR

134
2023-09-19 14:14:49
Ver traducción

According to reports, Omnitron Sensors, a pioneer in the development of MEMS sensing technology for large-scale and low-cost markets, recently announced that it will collaborate with Silex Microsystems, a subsidiary of Semielectronics, to mass produce MEMS scanning mirrors for LiDAR.

Eric Aguilar, co-founder and CEO of Omnitron Sensors, said, "We have noticed a huge demand from manufacturers of advanced driving assistance systems (ADAS), drones, and other robotic systems for low-cost, highly reliable LiDARs.

We have chosen Silex Microsystems, the world's largest pure MEMS foundry, to demonstrate our market readiness to deliver the first batch of MEMS scanning mirrors that can meet the accuracy, reliability, size, cost, and volume requirements of LiDAR in different applications
Concept proof MEMS scanning mirror developed by Omnitron Sensors.

According to Omnitron Sensors, its MEMS scanning mirror can provide 2-3 times the field of view (FoV) compared to other MEMS scanning mirrors currently used in remote LiDAR applications. Its stepper scanning mirror is designed specifically for harsh high vibration automotive environments and drone applications, and LiDAR gyroscopes produced by other suppliers cannot meet the demanding requirements of these applications.

Omnitron Sensors' solution has constructed an electrostatic motor that can move MEMS mirrors and achieve greater unit area force than similar products currently on the market. Aguilar stated that Omnitron Sensors achieved this goal using a 3D MEMS topology, but more importantly, its manufacturability. To ensure a simple and manufacturable process, Aguilar stated that their MEMS scanning mirrors do not use metal springs, but instead use silicon based springs, which have a hardness one thousand times that of the original and will not wear out.

Addressing MEMS Manufacturing Challenges
The challenges of MEMS device manufacturing are well known. Due to issues with the size, reliability, durability, and repeatability of MEMS devices, as well as the uniqueness of each new MEMS device process technology, MEMS manufacturing costs are high and the cycle from design to delivery is slow. The core IP of Omnitron Sensors can address these challenges.

As a new topology of MEMS, Omnitron Sensors' IP has redesigned its manufacturing process and provided support through new packaging technologies. This has accelerated the mass production of various small, low-cost, and precision MEMS devices, from scanning mirrors and inertial measurement units to microphones, pressure sensors, and switches.

Aguilar said: Omnitron Sensors' new MEMS topology, cleverly redesigning silicon process steps and new packaging methods, is an important step forward in the microelectronics industry. It greatly reduces the manufacturing complexity that has limited MEMS growth to date. By utilizing the standard equipment and processes already in place at the Silex Microsystems wafer factory, Omnitron Sensors have cleared the way for fast, large-scale delivery of robust, reliable, and affordable MEMS devices .

Source: Sohu

Recomendaciones relacionadas
  • High sensitivity visualization of ultrafast carrier diffusion using a wide field holographic microscope

    A sketch of the imaging and holographic parts of a transient holographic microscope, including a pulse sequence, to illustrate the signal modulation method. By imaging the pinhole array at the sample position, a diffraction limited excitation spot array can be created, allowing for the simultaneous collection of transient data around 100 excitation spots.Femtosecond transient microscopy is an impo...

    2023-12-25
    Ver traducción
  • Osram has received over 300 million euros in German investment to develop next-generation optoelectronic semiconductor technology

    Recently, ams Osram, a developer of smart sensors and transmitters, announced that it expects to receive over 300 million euros in funding from the German Federal Government and the Free State of Bavaria over the next five years.This funding is aimed at promoting Osram's development of the next generation optoelectronic semiconductor technology in Regensburg, Germany. The IPCEI funding in this bat...

    2023-09-25
    Ver traducción
  • A new approach to 3D printing has been published in a Nature journal

    In the last century, the improvement of mechanical properties of structural metals was mainly achieved through the creation of increasingly complex chemical compositions. The complexity of this ingredient increases costs, creates supply fragility, and makes recycling more complex.As a relatively new metal processing technology, metal 3D printing provides the possibility to re-examine and simplify ...

    2024-11-29
    Ver traducción
  • A review of research on residual stresses in carbon steel welding

    Researchers from the University of Witwatersrand in South Africa have reported a review of research on residual stresses in carbon steel welding: formation mechanisms, mitigation strategies, and advances in advanced post weld heat treatment technologies. The relevant paper titled "A comprehensive review of residual stresses in carbon steel welding: formation mechanisms, mitigation strategies, and ...

    04-12
    Ver traducción
  • Fundamentals of Next Generation Photonic Semiconductors: Small Lasers

    This week, an illustration was published on the cover of the international journal Science, showcasing a powerful mode-locked laser emitted from a miniature photonic semiconductor.A research team led by Alireza Marandi, a professor of electrical engineering and applied physics at the California Institute of Technology, has successfully developed a conventional mode-locked laser large enough to fit...

    2023-11-13
    Ver traducción