Español

New laser technology unlocks deuterium release in aluminum layers

146
2023-11-25 13:55:47
Ver traducción

In a recent study, quadrupole mass spectrometry was used to measure the number of deuterium atoms in the aluminum layer.
A recent study led by the National Institute of Laser, Plasma, and Radiation Physics and Sasa Alexandra Yehia Alexe from the University of Bucharest explored the details of laser induced ablation and laser induced desorption techniques using a 1053 nm laser source. The study was published in the Journal of Spectroscopy Part B: Atomic Spectroscopy.

The focus of this study is on the formation of 1 on substrates with different surface characteristics using high-power pulsed magnetron sputtering technology μ M aluminum layer. The key aspect is the software controlled laser pulse energy operation, which can achieve a seamless transition from layer ablation to layer desorption.

The research team evaluated the amount of deuterium released at the end of the laser induction process using quadrupole mass spectrometry. They compared it with the results of thermal desorption spectroscopy, and the results showed that the analyzed sample contained approximately 2.6 ×  ten ²¹  D at/m ²  Deuterium. Mass spectrometry data shows that 85% and 9% are released through LIA and LID, respectively.

The research team can also determine the boundary between ablation and desorption processes by mathematically modeling the data. The analysis of the aluminum layer surface combined with the substrate surface provides important insights into the mechanism of controlling deuterium atom release through these laser-induced processes.

However, the biggest and most important conclusion is that the research team can confirm their findings. By using optical emission spectroscopy, the research team confirmed that the substrate interface had been reached during the LIA-QMS analysis.

From advancing our understanding of materials science to potentially revolutionizing energy applications, these newly launched laser technologies have the potential to manipulate the atomic structure within materials. This has opened up a path for further research and promoted innovation in energy production and material engineering. This study demonstrates the potential of laser technology in manipulating atomic behavior within materials.

Source: Laser Net

Recomendaciones relacionadas
  • The Institute of Physics, Chinese Academy of Sciences has made significant progress in the research of lithium niobate nanooptics

    In recent years, breakthroughs in the preparation technology of lithium niobate single crystal thin films have greatly promoted the important application of lithium niobate crystals in micro nano optical devices such as optical metasurfaces. However, the high hardness and inactive chemical properties of lithium niobate crystals pose significant challenges to micro nano processing; In addition, con...

    04-15
    Ver traducción
  • Optical Capture of Optical Nanoparticles: Fundamentals and Applications

    A new article published in Optoelectronic Science reviews the basic principles and applications of optical capture of optical nanoparticles. Optical nanoparticles are one of the key elements in photonics. They can not only perform optical imaging on various systems, but also serve as highly sensitive remote sensors.Recently, the success of optical tweezers in separating and manipulating individual...

    2023-11-25
    Ver traducción
  • Bodor Laser: Laser Cutters Rank First in Global Sales for Six Consecutive Years

    On February 27, at Bodor Laser's global headquarters base in Licheng District, Jinan City, three automated production lines were operating at full capacity, struggling to meet the overwhelming demand. Lu Guohao, Secretary of the Board and Director of the President's Office at Bodor Laser, revealed that the company's laser cutter shipments exceeded 8,000 units in 2024, securing the top spot in glob...

    03-10
    Ver traducción
  • Xi'an Institute of Optics and Fine Mechanics has made new progress in the field of metasurface nonlinear photonics

    Recently, the Research Group of Nonlinear Photonics Technology and Applications in the State Key Laboratory of Transient Optics and Photonics Technology of Xi'an Institute of Optics and Fine Mechanics has made important progress in the field of super surface nonlinear photonics. Relevant research results were published in the internationally famous journal Nanoscale Horizons. The first author of t...

    2024-09-27
    Ver traducción
  • Acousto optic modulation of gigawatt level laser pulses in the ambient air of Nature Photonics

    An interdisciplinary research group, including the German synchrotron radiation accelerator DESY and the Helmholtz Institute in Jena, Germany, reported that invisible gratings made of air not only are not damaged by lasers, but also maintain the original quality of the beam. The relevant research has been published in Nature Photonics under the title of "Acousto opt modulation of gigawatt scale la...

    2023-10-12
    Ver traducción