Español

Oxford University Tokamak Energy Company develops laser technology for fusion power plants

121
2024-03-14 15:00:07
Ver traducción

Tokamak Energy is currently developing a new laser measurement technology for controlling extreme conditions inside fusion power plants.
The laser based dispersion interferometer system is being tested at the company's headquarters in Oxford and will be installed on its world record breaking fusion machine ST40 later this year.

Clean, safe, and renewable nuclear fusion power generation occurs inside the tokamak, which is a device that heats plasma to over 100 million degrees Celsius.
A professional laser system will closely and accurately measure the hydrogen fuel contained inside, ensuring that the burning plasma remains stable and maintains density.

Dr. Tadas Pyragius, a plasma physicist at Tokamak Energy, explained, "Measuring plasma density is key to our understanding and control of fusion fuels and future efficient power plant operations.".
The interaction between laser beams emitted by plasma and electrons tells us the density of fuel, which is crucial for sustained fusion conditions and providing safe and reliable energy to the power grid.

"The extreme conditions caused by the nuclear fusion process mean that we now need to improve laser based diagnostic technology to advance our mission of providing clean, safe, and affordable nuclear fusion energy in the 2030's."
The ST40 of Tokamak Energy is the first private nuclear fusion machine to achieve a plasma ion temperature of 100 million degrees Celsius, which is the threshold for commercial nuclear fusion.

Since achieving a breakthrough in 2022, the machine has undergone a series of hardware upgrades, including new power supplies and diagnostic systems.
Last year, the company successfully debugged the Thomson scattering laser diagnostic instrument for ST40 to provide detailed readings of plasma temperature and density at specific locations.
After further upgrades and maintenance, the machine will be put back into use later in 2024.

Source: Laser Net

Recomendaciones relacionadas