Italiano

Researchers use machine learning to optimize high-power laser experiments

130
2024-05-24 14:21:53
Vedi traduzione

High intensity and high repetition lasers rapidly and continuously emit powerful bursts of light, capable of emitting multiple times per second. Commercial fusion energy factories and advanced compact radiation sources are common examples of systems that rely on such laser systems. However, humans are a major limiting factor as their response time is insufficient to manage such rapid shooting systems.

To address this challenge, scientists are searching for different ways to leverage the power of automation and artificial intelligence, which have real-time monitoring capabilities and can perform high-intensity operations.

A group of researchers from the Lawrence Livermore National Laboratory (LLNL), the Fraunhofer Laser Technology Institute (ILT), and the Aurora Infrastructure (ELI ERIC) are conducting an experiment at the ELI beamline facility in the Czech Republic to optimize high-power lasers using machine learning (ML).

Researchers trained LLNL's cognitive simulation development ML code on laser target interaction data, allowing researchers to adjust as the experiment progressed. The output is fed back to the ML optimizer, allowing it to fine tune the pulse shape in real time.

The laser experiment lasted for three weeks, each lasting about 12 hours. During this period, the laser fired 500 times at 5-second intervals. After every 120 shots, stop the laser to replace the copper target foil and check the vaporized target.

"Our goal is to demonstrate reliable diagnosis of laser accelerated ions and electrons from solid targets with high intensity and repeatability," said Matthew Hill, chief researcher at LLNL. "With the support of machine learning optimization algorithms' fast feedback to the laser front-end, the total ion yield of the system can be maximized."

Researchers have made significant progress in understanding the complex physics of laser plasma interactions using the most advanced high repetition rate advanced pulse laser system (L3-HAPLS) and innovative ML technology.

So far, researchers have relied on more traditional scientific methods, which require manual intervention and adjustment. With the help of machine learning capabilities, scientists are now able to analyze large datasets more accurately and make real-time adjustments during experiments.

The success of the experiment also highlights the ability of L3-HAPLS, L3-HAPLS is one of the most powerful and fastest high-intensity laser systems in the world. The experiment has proven that L3-HAPLS has excellent performance repeatability, focus quality, and extremely stable alignment.

Hill and his LLNL team spent about a year collaborating with the Fraunhofer ILT and ELI Beamlines teams to prepare for the experiment. The Livermore team utilized several new instruments developed under laboratory led research and development plans, including representative scintillation imaging systems and REPPS magnetic spectrometers.

The lengthy preparation work paid off as the experiment successfully generated reliable data that can serve as the foundation for progress in various fields including fusion energy, materials science, and medical treatment.

GenAI technology has always been at the forefront of scientific innovation and discovery. It is helping researchers break through the boundaries of scientific possibilities. Last week, researchers from MIT and the University of Basel in Switzerland developed a new machine learning framework to reveal new insights into materials science. Last week, artificial intelligence was proven to play an important role in drug discovery.

Source: Laser Net

Raccomandazioni correlate
  • Another blockbuster acquisition! The two equipment makers announced a merger to focus on laser construction

    Recently, RDO equipment announced the completion of its acquisition of Rocky Mountain Transit&laser, expanding the construction technology solutions, services and expertise of John Deere construction and Wirtgen group in eight stores in Idaho, Wyoming and Utah, RDO acquired the stores in December 2023.Adam Gilbertson, senior vice president of field technology and innovation at RDO, said the ac...

    2024-05-31
    Vedi traduzione
  • Luxiner launches modular laser processing solution Multiscan HE

    Recently, Luxiner, the leading brand in the field of laser technology in the UK, announced the launch of MultiSCAN ®  The latest members of CO2 laser systems - Multiscan HE 10i, 15i, and 25i. These new systems are presented in a completely independent form, integrating power, PC, and software, providing users with comprehensive solutions.The Multiscan HE 10i, 15i, and 25i not only inherit the indu...

    2024-06-07
    Vedi traduzione
  • The acoustooptic modulation of gigawatt level laser pulses in ambient air can be applied to other optical components such as lenses and waveguides

    An interdisciplinary research group, including the German synchrotron radiation accelerator DESY and the Helmholtz Institute in Jena, Germany, reported that invisible gratings made of air not only are not damaged by lasers, but also maintain the original quality of the beam.The relevant research has been published in Nature Photonics under the title of "Acousto opt modulation of gigawatt scale las...

    2023-10-12
    Vedi traduzione
  • Yueming Laser achieves a comprehensive product matrix of "laser+vision+automation+robots"

    Automotive electronics refers to the general term for all electronic devices and components used in automotive products, mainly divided into two major sections: body electronic control systems and on-board electronic devices.Among them, the body electronic control system is mainly composed of engine control system, auto drive system, chassis control system, etc., which is mainly responsible ...

    2023-09-14
    Vedi traduzione
  • Using laser welding technology to manufacture rotor shafts at the speed of light

    How can EMAG Laser Technology accelerate the production of critical powertrain components using its flagship product ELC 6 system?The rapid popularity of electric vehicles worldwide indicates that production planners must increase their efforts in producing key components of electric vehicles, particularly the rotor shaft. The importance of the rotor shaft as the core component for converting elec...

    2024-07-17
    Vedi traduzione