Italiano

Researchers prepare a new type of optical material with highly tunable refractive index

154
2024-06-25 12:00:16
Vedi traduzione

It is reported that researchers from Beijing University of Chemical Technology and BOE Technology Group Co., Ltd. have collaborated to develop a transparent organic-inorganic composite optical adhesive material with highly tunable refractive index. The related research paper was recently published in Engineering.

In the early days, glass was the main raw material for optical components. In recent years, organic resin based optical materials have developed rapidly due to their advantages of easy molding, light weight, and low cost. However, currently commercialized organic optical resins are often limited by the structural characteristics of organic molecules and polymer chains, with refractive indices generally limited to 1.4-1.6.

Refractive index is one of the important parameters of optical materials. High refractive index can reduce the thickness and curvature of optical components, while maintaining optical functional effects and achieving miniaturization of components, expanding their application range.

Based on the molecular structure characteristics of acrylic resin based UV curable optical adhesive and the practical application needs in optoelectronic display devices, the R&D team has developed a highly transparent and high refractive index optical adhesive material by optimizing the preparation of titanium dioxide nanoparticles and their composite process with acrylic resin.

The R&D personnel used electron microscopy imaging and atomic force microscopy to analyze and test the microstructure of the composite material, confirming that titanium dioxide nanoparticles are uniformly dispersed in the composite material, and the cured film has good flatness. When the mass fraction of titanium dioxide in the composite optical adhesive is 30wt% (mass percentage), the refractive index of the composite material can reach 1.67.


In addition, after being cured into a film by ultraviolet (UV), the refractive index of the material can even reach 2.0, while maintaining high transparency of over 98% and low haze of less than 0.05% in the visible light range. Moreover, precision processing of optical microstructures can be further achieved through embossing technology, which can be used to make new optical components such as display light guides. In the paper, the R&D team demonstrated that using a new type of optical adhesive to manufacture a micro prism type light guiding film can effectively improve illumination and reduce energy consumption. In the future, this achievement is expected to be widely applied in fields such as precision medicine, health lighting, and new display products.

Article source: Science and Technology Daily

Raccomandazioni correlate
  • Scientists have developed a solar cell that can bend and soak in water

    Researchers and their partners at the RIEKN Creative Physical Science Research Center have created a flexible and waterproof organic photovoltaic film. This innovative thin film can integrate solar cells into clothing, maintaining functionality even in rainwater or washing cycles.One of the potential uses of organic photovoltaic technology is to manufacture wearable electronic devices that can be ...

    2024-05-08
    Vedi traduzione
  • New technology can efficiently heal cracks in nickel based high-temperature alloys manufactured by laser additive manufacturing

    Recently, Professor Zhu Qiang's team from the Department of Mechanical and Energy Engineering at Southern University of Science and Technology published their latest research findings in the Journal of Materials Science. The research team has proposed a new process for liquid induced healing (LIH) laser additive manufacturing of cracks. By controlling micro remelting at grain boundaries to introdu...

    2024-03-15
    Vedi traduzione
  • British scientists pioneered groundbreaking laser tools to help discover exoplanets

    Physicists from the University of Heriot and the University of Cambridge have developed an innovative laser system called Astrocomb, which can significantly improve the detection of exoplanets. This advanced tool can accurately measure the spectra emitted by nearby stars, which fluctuate due to the gravitational influence of orbiting planets. It is expected that this technology will enhance resear...

    2024-04-02
    Vedi traduzione
  • Researchers use blurry light to 3D print high-quality optical components

    Canadian researchers have developed a new 3D printing method called Blur Tomography, which can quickly produce micro lenses with commercial grade optical quality. The new method can make designing and manufacturing various optical devices easier and faster.Daniel Webber from the National Research Council of Canada stated, "We have intentionally added optical blurring to the beams used in this 3D p...

    2024-05-11
    Vedi traduzione
  • Samsung and SK Hynix Explore Laser Debonding Technology

    According to South Korean media etnews, Samsung Electronics and SK Hynix have started the process technology conversion of high bandwidth memory (HBM) wafers, with the introduction of new technologies to prevent wafer warping as the core, which is considered to be aimed at the next generation HBM. It is expected that with the process transformation, the material and equipment supply chain will als...

    2024-07-16
    Vedi traduzione