日本語

Received NASA contract! Breakthrough blue light laser technology leads the space power revolution

93
2024-05-08 15:25:50
翻訳を見る

On May 6th, NUBURU, a leading enterprise in high-power and high brightness industrial blue laser technology, announced that the company has been awarded a second phase contract worth $850000 by the National Aeronautics and Space Administration (NASA) to promote blue laser power transmission technology as a unique solution that significantly reduces the size and weight of equipment required for lunar and Martian applications. The award of this contract is based on the successful completion of the first phase of the Small Business Innovation Research (SBIR) project by NUBURU in August 2023.

NUBURU's blue power transmission technology has revolutionized the power transmission methods in extreme environments such as the Moon and Mars, achieving economic and practical power transmission by eliminating reliance on bulky copper or aluminum wires.

This technology not only supports dynamic power distribution for mobile roaming vehicles, temporary/permanent campsites, and remote habitats, but also achieves low size, weight, and power (SWaP) design through its unique blue light laser architecture, complemented by clear visibility assisted navigation, efficient direct diode technology, and advanced direct bandgap solar cell technology, ensuring extremely high power transmission efficiency.

Compared to the energy of other wavelengths, the energy of blue light can be concentrated on smaller spots, which means that blue laser can create finer details.

This technological solution is directly aligned with the mission objectives of NASA's Artemis program, which aims to permanently send humans back to the moon. NASA outlined this requirement in the Moon to Mars target of Lunar Infrastructure Goal 1.

In the first stage, NUBURU has fully demonstrated the scientific, technological, and commercial feasibility of its technology. In the second stage, the company plans to further expand the power, range, and performance of blue light laser power beam technology, demonstrating it within kilometers with a power of several hundred watts, and plans to use next-generation technology to expand the technology range to tens of kilometers on the lunar surface.

"The acquisition of this contract once again demonstrates the innovation and disruptive nature of NUBURU's blue light power transmission technology. We have the potential to completely change the power management challenges faced by NASA, other space operators, and numerous commercial enterprises. Our technology is not only applicable to space environments such as the Moon and Mars, but can also be widely applied in ground applications such as remote power solutions, disaster relief operations, and defense logistics," said Brian Knaley, CEO and CFO of NUBURU
He further added, "NUBURU's high brightness blue laser technology has broad application prospects in various fields such as industry, healthcare, national defense, electric vehicles, consumer electronics, aerospace, healthcare, etc. We look forward to bringing revolutionary changes to various industries through this technology."

NASA's SBIR program aims to provide funding support for innovative technologies with commercial potential, ultimately promoting their commercialization and deployment through three stages of research, development, and demonstration. The second phase contract awarded to NUBURU is a crucial step in the commercialization process of blue laser power beam technology.

Source: OFweek

関連のおすすめ
  • Revealing the essence of optical vortices: a step towards understanding the interaction between light and matter

    In a groundbreaking scientific study published in Volume 13 of the Scientific Report, researchers reported on the results of Young's double slit interference experiment using oscillating vortex radiation under a photon counting system. The experiment involves using a spiral oscillator to emit second harmonic radiation in the ultraviolet range. Using an ultra narrow bandpass filter in the low curre...

    2023-12-29
    翻訳を見る
  • Feasibility Study on Composite Manufacturing of Laser Powder Bed Melting and Cold Casting

    It is reported that researchers from the Technical University of Munich in Germany have reported a feasibility study on the composite manufacturing of EN AC-42000 alloy by combining laser powder bed melting and cold casting. The related research titled "Feasibility study on hybrid manufacturing combining laser based powder bed fusion and chill casting on the example of EN AC-42000 alloy" was publi...

    2024-06-06
    翻訳を見る
  • Intel: Has acquired most of ASML's NA extreme ultraviolet lithography equipment in the first half of next year

    According to Korean media reports, Intel has acquired most of the high numerical aperture (NA) extreme ultraviolet (EUV) lithography equipment manufactured by ASML in the first half of next year.ASML plans to produce 5 high NA EUV lithography equipment this year, all of which will be supplied to Intel.They stated that ASML has an annual production capacity of approximately 5-6 High Numerical Apert...

    2024-05-21
    翻訳を見る
  • Sivers will develop laser arrays for artificial intelligence and deliver prototypes in 2024

    Sivers Optics, a subsidiary of Sivers Semiconductors, has signed a product development agreement with an undisclosed company.Starting from the initial contract worth $1.3 million, the prototype will be delivered in 2024, and it is expected that the agreement will grow rapidly in 2025 before transitioning to mass production. After entering full production, customers expect the annual chip productio...

    2024-03-18
    翻訳を見る
  • 10.30 Shenzhen Munich South China Laser Exhibition awaits you

    The Munich South China Laser Exhibition is about to open!As a member exhibition of the South China International Intelligent Manufacturing, Advanced Electronics, and Laser Technology Expo (referred to as "LEAP Expo"), it will be held from October 30 to November 1, 2023 at the Shenzhen International Convention and Exhibition Center (Bao'an New Hall) in conjunction with the Munich South China Elect...

    2023-10-26
    翻訳を見る