日本語

Shanghai Institute of Optics and Mechanics proposes a new solution for quartz glass as a visible light laser material

125
2024-06-05 15:33:45
翻訳を見る

Recently, Hu Lili, a research group of the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a new scheme based on rare earth ions Dy3+doped quartz glass as a yellow laser material, and the relevant research results were published in the Journal of the American Ceramic Society as "Effect of P/Al ratio on the X ray induced darkness in Dy doped silica glasses at visible wavelengths".

At present, Dy3+doped yellow light lasers have important application potential in fields such as Bose Einstein condensation and photocoagulation therapy. Fluoride fiber matrix is widely used as the main material for visible light gain fibers due to its low phonon distribution. However, fluoride optical fibers have limitations such as poor chemical stability and mechanical properties, as well as harsh preparation conditions, which greatly increase the cost and difficulty of preparation. In contrast, quartz glass matrix has achieved rapid development due to its excellent physical and chemical properties, mechanical properties, and optical properties, and has successfully achieved yellow light laser output of Dy3+ions. However, Dy3+doped quartz fibers suffer from photon darkening under blue light excitation, which limits the further improvement of output power. Therefore, how to suppress light dimming has become a key scientific problem that urgently needs to be solved in the field of visible light lasers.

The research team proposes a new scheme for anti photon darkening Dy3+doped quartz glass. This scheme significantly reduces the absorption loss caused by irradiation by increasing the P/Al ratio, suppressing the valence change of Dy ions and the formation of defects such as Al OHC from within the glass matrix. In quartz glass, Al is a commonly used rare earth ion dispersant that can improve the dispersion and solubility of rare earth ions. However, due to the mismatch between the valence state of Al3+in quartz glass and the matrix Si, defects such as hole center Al-OHC are easily generated after absorbing a certain amount of energy (blue light, ultraviolet radiation). The introduction of P can form a valence equilibrium and stable [PAlO4] structural group with Al, which suppresses the formation of Al related defects and improves the anti darkening performance of Dy doped quartz glass. This work provides key materials and method support for visible light fiber lasers.

The relevant research has been supported by projects such as the National Natural Science Foundation of China.

Figure 1: Increasing the P/Al ratio suppresses defects induced by irradiation in quartz glass

Source: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

関連のおすすめ
  • Solar cell laser processing deserves attention

    Laser processing is a relatively emerging non-contact processing method that utilizes the high energy of a beam of light to interact with materials and instantly vaporize or change their properties to achieve the expected manufacturing effect. It has gradually been promoted and applied in China in the past 20 years. Due to the different types, pulse widths, and wavelengths of laser generators, the...

    2023-10-31
    翻訳を見る
  • Rapid and convenient preparation of small-sized metal nanoparticles using microchip lasers

    Liquid pulse laser ablation is a reliable and versatile technique for producing metal nanoparticles in solution. Its advantages include no reducing agent, simple operation, high purity, no need for purification steps, and environmental processing conditions, making it the preferred method for traditional metal NP preparation.The widespread adoption of PLAL in scientific and industrial research has...

    2024-01-30
    翻訳を見る
  • New two-photon aggregation technology significantly reduces the cost of femtosecond laser 3D printing

    Scientists at Purdue University in the United States have developed a new type of two-photon polymerization technology. This technology cleverly combines two lasers and utilizes 3D printing technology to print complex high-resolution 3D structures while reducing femtosecond laser power by 50%. It helps to reduce the cost of high-resolution 3D printing technology, thereby further expanding its appl...

    2024-07-05
    翻訳を見る
  • Exail acquires optical company Leukos

    Recently, exail (formerly iXblue) announced the acquisition of Leukos, an optical company specializing in providing advanced laser sources for metrology, spectroscopy, and imaging applications.Leukos was founded by the French XLIM Institute (a joint research department of the French National Academy of Sciences and the University of Limoges), with over 20 years of professional experience in the re...

    01-13
    翻訳を見る
  • The new generation of special optical fibers is suitable for the application of quantum technology

    Recently, physicists from the University of Bath in the UK have developed a new generation of specialized optical fibers to address the data transmission challenges of the future quantum computing era. This achievement is expected to promote the expansion of large-scale quantum networks. The research results were published in the latest issue of Applied Physics Letters Quantum.The highly anticipat...

    2024-08-02
    翻訳を見る