日本語

Luxiner launches LXR ultra short pulse laser platform

127
2024-06-11 15:19:17
翻訳を見る

Luxiner, the global leader in laser technology, has launched LXR ® The ultra short pulse (USP) laser platform is a revolutionary leap in industrial laser processing. The LXR platform provides unparalleled performance, versatility, and reliability, making significant progress in burst mode processing.

 



Micro Miracle Master
The world of miniaturization is flourishing due to the continuous improvement of accuracy. In this intricate dance, ultrafast laser microfabrication became a master, choreographing a symphony of power, pulse stability, and pulse duration, creating micro miracles.

Power: Driving force
Imagine a sculptor waving a chisel. In the field of ultrafast laser microfabrication, power is like a sculptor's powerful blow. It determines the amount of material removed by each laser pulse. Higher power allows for faster processing or deeper cutting, which is crucial for creating complex microchannels or drilling submicron holes. However, just as heavy hands can crush fine work, excessive power in laser microfabrication can lead to unnecessary thermal damage. The importance of the following two elements lies here.

Pulse to pulse stability: Unknown hero
The artistry of sculptors does not rely solely on brute force. Consistent and controllable travel is equally important. This unwavering focus translates into pulse to pulse stability in the world of ultrafast lasers. Both short-term and long-term stability play a crucial role. Short term stability can minimize power fluctuations within a single pulse sequence, ensuring that each pulse can provide consistent energy. This consistency is transformed into a uniform feature size and depth of the entire microfabrication area. On the other hand, long-term stability focuses on maintaining consistent power output for a longer period of time. Just as a sculptor maintains a stable hand throughout the entire work process, a stable laser can ensure consistent results throughout the entire process.

X factor: Input ultrafast pulse
Ultra fast laser microfabrication surpasses traditional cutting tools. It introduces a revolutionary element: pulse duration. Ultra fast pulses interact with materials at a molecular level in femtoseconds (billionths of a second to millionths of a second) to minimize heat transfer to surrounding materials. Imagine switching from a chisel to a surgical knife. The precise cutting of a surgical knife can remove the required materials while minimizing the impact on the surrounding area, thus achieving complex microscopic features without damaging the delicate structure.

Perfect Harmony: Unmatched Control and Speed
Power provides driving force, and the stability between pulses ensures unwavering focus. The ultra fast pulse duration is like a surgical knife. This harmonious interaction enables the LXR platform to create breakthrough micro features with unparalleled control and speed. It breaks through the boundaries of miniaturization and paves the way for the advancement of microelectronics, photonics, medical equipment, and biosensors.

LXR Platform: Innovative Symphony
Finally, Antonio Raspa, Product Manager of Luxiner Solid State Laser, stated, "LXR ®  The platform represents the crystallization of years of dedicated research and development. By combining excellent power, unwavering stability, and ultrafast pulse technology, we have created a truly groundbreaking solution that enables manufacturers to redefine the possibilities of microfabrication. With the help of the LXR platform, symphonies of power, accuracy, and speed are now coming into play.

Luxiner: Dedicated to innovation and customer success
Luxiner enjoys a deserved reputation in producing powerful and reliable laser sources. The LXR ® platform upholds this tradition by ensuring optimal uptime and productivity, and is backed by Luxiner's excellent customer support and service.

Source: Laser Net

関連のおすすめ
  • Graphene terahertz absorber and graded plasma metamaterials

    Optical metamaterials are an effective way to utilize their superior photon capture capabilities. Therefore, perfect absorbers can be achieved through nanoscale resonant plasmas and metamaterial structures.Metamaterial perfect absorbers (MPAs) are typically composed of periodic subwavelength metals (such as plasma superabsorbers) or dielectric resonance units. Compared with static passive physical...

    2024-05-20
    翻訳を見る
  • Widely tunable terahertz laser enhances photo induced superconductivity in K3C60

    Researchers at the Max Planck Institute for Material Structure and Dynamics (MPSD) in Hamburg, Germany, have long been exploring the effect of using custom laser drivers to manipulate the properties of quantum materials to deviate from equilibrium states.One of the most eye-catching demonstrations of these physics is unconventional superconductors, where enhanced electron coherence and super trans...

    2023-10-13
    翻訳を見る
  • The improvement of additive manufacturing through artificial intelligence, machine learning, and deep learning

    Additive manufacturing (AM) has made it possible to manufacture complex personalized items with minimal material waste, leading to significant changes in the manufacturing industry. However, optimizing and improving additive manufacturing processes remains challenging due to the complexity of design, material selection, and process parameters. This review explores the integration of artificial int...

    02-24
    翻訳を見る
  • Three core processes of laser soldering support the development of PCB electronics industry

    In the field of modern electronic manufacturing, PCB (printed circuit board) serves as the carrier of electronic components. In its manufacturing process, laser soldering technology has become a key link in PCB electronic manufacturing due to its advantages of high precision, high efficiency, and low thermal impact. This article will explore the application of laser soldering technology and its ma...

    2024-04-15
    翻訳を見る
  • Scientists demonstrate powerful UV-visible infrared full-spectrum laser

    Figure: a. Schematic diagram of the HCF-LN-CPPLN experimental setup. W. CaF? Window M, mirror.b. The bright white light circular spots emitted by the CPPLN sample.c. The first-order diffraction beam of B displays a colorful rainbow pattern from purple to red.d. The HCF-LN-CPPLN module generates normalized spectra of the output full spectrum laser signal through the second NL HHG and third NL SPM e...

    2023-08-25
    翻訳を見る