English

Researchers develop new techniques for controlling individual qubits using lasers

56
2023-09-12 15:01:26
See translation

Researchers at the University of Waterloo's Institute for Quantum Computing (IQC) have developed a new technique that uses lasers to control individual qubits made from the chemical element barium. The breakthrough is a key step toward realizing the capabilities of quantum computers.

The new technique uses thin glass waveguides to segment and focus laser beams with unprecedented precision. Each focused laser beam can be adjusted independently, making it possible to reliably manipulate individual qubits. Previous methods could not achieve this level of control.

One of the main advantages of the new technology is its ability to limit crosstalk, which is interference between adjacent ions. The researchers were able to reduce the crosstalk to just 0.01 percent of its relative strength, making it one of the best in the quantum world. This means that the laser beam can target specific ions without affecting its neighbors.

The researchers focused on the barium ion, which has the right energy state to be used as the zero and one energy levels of qubits. Unlike other atom types, barium ions can be manipulated using visible green light rather than higher energy ultraviolet light. This allows researchers to take advantage of commercially available optical techniques that were previously unavailable at ultraviolet wavelengths.

The team developed a waveguide circuit that divides a single laser beam into 16 different light channels. Each channel is then sent to its own fibre-based modulator, which individually controls the intensity, frequency and phase of each laser beam. A series of optical lenses are then used to focus the laser beam to a narrow gap.

The researchers monitored each laser beam with precise camera sensors, confirming their precise focusing and control. This highly accurate and flexible control system sets a new standard in academia and industry.

The ultimate goal of this research is to build barium ion quantum processors, because ions are the same natural qubits that do not need to be manufactured. The focus now is on finding ways to effectively control these ions.

Source: Laser Network

Related Recommendations
  • The Application of Femtosecond Laser in Precision Photonics Manufacturing

    Femtosecond laser emits ultra short light pulses with a duration of less than 1 picosecond, reaching the femtosecond domain. The characteristics of femtosecond lasers are extremely short pulse width and high peak intensity.Ultra short blasting can minimize waste heat, ensure precise material processing, and minimize incidental damage. Their peak intensities can cause nonlinear optical interactions...

    2024-02-28
    See translation
  • Trends and Reflections on the Laser Industry in 2025

    In 2024, the laser industry will still reach new heights, although some predicted concerns have been fulfilled! From beginning to end, the development path of the manufacturing industry has been full of uncertainty, but as time passes and we enter a new year, new technologies continue to emerge like mushrooms after rain.In 2025, practitioners in the laser and manufacturing industries still face ma...

    01-02
    See translation
  • Progress in Calibration of Large Aperture Diffractive Lenses in the High Power Laser Physics Joint Laboratory of Shanghai Institute of Optics and Mechanics

    Recently, the High Power Laser Physics Joint Laboratory of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a single exposure interferometric calibration method for large aperture diffractive lenses, which provides strong support for the engineering application of large aperture diffractive lenses. The relevant achievements are published in Optics Letters as "...

    2023-10-14
    See translation
  • Abnormal relativistic emission generated by strong interaction between laser and plasma reflector

    The interaction between strong laser pulses and plasma mirrors has been a focus of recent physical research, as they generate interesting effects. Experiments have shown that these interactions can generate a nonlinear physical process called high-order harmonics, characterized by emitting extreme ultraviolet radiation and brief flashes of laser light.Researchers from the Czech Extreme Light Infra...

    2023-12-04
    See translation
  • Lumiotive and Hokuyo announce the launch of the world's first 3D LiDAR sensor with true solid-state beam steering

    Lumotive, a pioneer in optical semiconductor technology, and Hokuyo Automatic Co., a global leader in sensors and automation, Ltd. announced today the commercial version of the YLM-10LX 3D LiDAR sensor. This breakthrough product features Lumiotive's light controlled metasurface (LCM) ™) Optical beamforming technology represents a significant leap in the application of solid-state programmable opti...

    2024-05-25
    See translation