English

Researchers develop new techniques for controlling individual qubits using lasers

1162
2023-09-12 15:01:26
See translation

Researchers at the University of Waterloo's Institute for Quantum Computing (IQC) have developed a new technique that uses lasers to control individual qubits made from the chemical element barium. The breakthrough is a key step toward realizing the capabilities of quantum computers.

The new technique uses thin glass waveguides to segment and focus laser beams with unprecedented precision. Each focused laser beam can be adjusted independently, making it possible to reliably manipulate individual qubits. Previous methods could not achieve this level of control.

One of the main advantages of the new technology is its ability to limit crosstalk, which is interference between adjacent ions. The researchers were able to reduce the crosstalk to just 0.01 percent of its relative strength, making it one of the best in the quantum world. This means that the laser beam can target specific ions without affecting its neighbors.

The researchers focused on the barium ion, which has the right energy state to be used as the zero and one energy levels of qubits. Unlike other atom types, barium ions can be manipulated using visible green light rather than higher energy ultraviolet light. This allows researchers to take advantage of commercially available optical techniques that were previously unavailable at ultraviolet wavelengths.

The team developed a waveguide circuit that divides a single laser beam into 16 different light channels. Each channel is then sent to its own fibre-based modulator, which individually controls the intensity, frequency and phase of each laser beam. A series of optical lenses are then used to focus the laser beam to a narrow gap.

The researchers monitored each laser beam with precise camera sensors, confirming their precise focusing and control. This highly accurate and flexible control system sets a new standard in academia and industry.

The ultimate goal of this research is to build barium ion quantum processors, because ions are the same natural qubits that do not need to be manufactured. The focus now is on finding ways to effectively control these ions.

Source: Laser Network

Related Recommendations
  • Mei Xin Sheng: The development of high-precision polarized light crown products has been completed

    On September 5, when Mei Xin Sheng held an analyst meeting, it said that the company has launched a fully integrated ultra-low power optical proximity detection sensor and a three-in-one ambient light and proximity detection sensor with ultra-high sensitivity, which have entered mass production.The research and development of high-precision polarized light crown products has been completed, the fe...

    2023-09-05
    See translation
  • Photon Industry Acquisition Information

    Theon International and Exosens SA have reached an agreement to acquire 9.8% of the shares for 268.7 million euros (approximately 312 million US dollars, equivalent to 54.0 euros per share).Theon International is a Greek based developer and manufacturer of customizable night vision, thermal imaging systems, and electro-optical ISR (observation) systems for military and security applications.Theon ...

    10-21
    See translation
  • Innovative laser technology: a novel quantum cavity model for superradiance emission

    Quantum optics is a complex field where theoretical and experimental physicists collaborate to achieve breakthroughs in explaining subatomic level phenomena.Recently, Farokh Mivehvar from the University of Innsbruck used the most comprehensive model in quantum optics, the Dicke model, to study the interaction between two groups of atoms in a quantized field. This new study makes it possible to obs...

    2024-03-16
    See translation
  • High performance optoelectronic device developer "Micro Source Photon" completes B+round financing

    Recently, Weiyuan Photon (Shenzhen) Technology Co., Ltd. (hereinafter referred to as "Weiyuan Photon") announced the completion of a B+round of financing, with investors including Yicun Capital, Chenfeng Capital, and Beijing Guoqian Investment. The specific amount has not been disclosed. According to its official website, MicroSource Photonics was founded in November 2018, with the main members...

    2024-07-23
    See translation
  • Lockheed Martin announces expansion of 16000 square feet 3D printing center

    Recently, US military industry giant Lockheed Martin announced that it will significantly increase its additive manufacturing capabilities and expand its factory in Texas. The expansion project includes approximately 16000 square feet of dedicated space for 3D printing technology, and the addition of some of the largest large format multi laser printers in the space (it is worth noting that Lockhe...

    2024-12-02
    See translation