English

Emerging laser technologies for precise manufacturing of multifunctional nanomaterials and nanostructures

1165
2024-08-05 15:08:57
See translation

The use of photons to directly or indirectly drive chemical reactions has fundamentally changed the field of nanomaterial synthesis, leading to the emergence of new sustainable laser chemistry methods for manufacturing micro - and nanostructures. The incident laser radiation triggers complex interactions between chemical and physical processes at the interface between solid surfaces and liquid or gas environments.

In such a multi parameter system, it is impossible to precisely control the resulting nanostructures without a deep understanding of the chemical and physical processes influenced by the environment.

This review aims to provide a detailed and systematic exposition of these processes, examining mature and emerging laser technologies used for producing advanced nanostructures and nanomaterials. Both gases and liquids are considered potential reaction environments that affect the manufacturing process, and subtractive and additive manufacturing methods are also analyzed. Finally, the prospects and emerging applications of such technologies were also discussed.

Through an overview of the history and latest achievements in the field of laser chemistry, researchers have concluded that the development of laser technology, green chemistry methods, and nanophotonics has led to a paradigm shift in modern nanomanufacturing. By changing parameters such as laser beam intensity, environmental composition, and absorption spectra, people can switch between additive manufacturing and subtractive manufacturing or between chemical modification and morphological surface modification under almost the same processing arrangement.

Laser radiation triggers these processes in two different ways:
1) Photochemical action: Photons excite molecular oscillations or electrons in the environment, or generate electron hole pairs on the surface. In this case, the laser wavelength corresponds to certain absorption bands of the material. Therefore, at a time scale greater than that required for chemical reactions, the material will be displaced from thermal equilibrium. Chemical reactions are activated by free charge carriers, or the threshold is lowered due to this excitation.

2) Thermal induction effect: The absorbed laser radiation raises the interface temperature and becomes a local heat source. In this case, thermal equilibrium can be assumed, and chemical reactions are activated by the increased temperature at the interface.

Both of these physical pathways can save a significant amount of energy during the production process. The photochemical method can avoid the Maxwell Boltzmann energy distribution of reactants, in which case only the high-energy "tail" can overcome the reaction barrier, and the rest only dissipate energy. The efficiency of laser-induced thermochemical patterning is higher than that of traditional chemical reactors because light is only localized in the area that needs to be processed. The ultimate goal of this direction is to achieve high control over reaction product parameters, high spatial accuracy, low toxicity, and cost-effectiveness, making laser chemistry methods suitable for industrial scale applications in fields such as flexible electronics, planar optics, sensing, catalysis, supercapacitors, and solar energy.



Source: Yangtze River Delta Laser Alliance

Related Recommendations
  • How to choose between continuous and pulsed fiber lasers?

    Fiber laser, with its simple structure, low cost, high electro-optical conversion efficiency, and good output effect, has been increasing in proportion in industrial lasers year by year. According to statistics, fiber lasers accounted for 52.7% of the industrial laser market in 2020.According to the characteristics of the output beam, fiber lasers can be classified into two categories: continuous ...

    2023-12-20
    See translation
  • The Application of Femtosecond Laser in Precision Photonics Manufacturing

    Femtosecond laser emits ultra short light pulses with a duration of less than 1 picosecond, reaching the femtosecond domain. The characteristics of femtosecond lasers are extremely short pulse width and high peak intensity.Ultra short blasting can minimize waste heat, ensure precise material processing, and minimize incidental damage. Their peak intensities can cause nonlinear optical interactions...

    2024-02-28
    See translation
  • Progress made by the Precision Measurement Institute in Thorium Ion Trapping Research

    Recently, the Cold Molecular Ion Research Group of the Institute of Precision Measurement has made significant progress in the loading, trapping, and recognition of thorium ions. The related research results have been published as cover and selected articles in the international physics journal Journal of Applied Physics, titled "Loading and identifying variable charged thorium ions in a linear io...

    2024-06-21
    See translation
  • Japanese and Australian teams use lasers to search for space debris the size of peanuts

    It is reported that Japanese startup EX Fusion will soon reach an agreement with Australian space contractor Electric Optical Systems to conduct on-site testing of technology for tracking small space debris orbiting Earth.Image source: LeolabsEX Fusion, headquartered in Osaka, specializes in the laser business with the goal of achieving commercial laser fusion reactors. So far, nuclear fusion rese...

    2023-10-10
    See translation
  • IPG Q1 revenue of $252 million, co-founder and new CEO of Jiaobang

    Recently, IPG Photonics, a high-performance fiber laser supplier in the United States, released its first quarter financial report as of March 31, 2024.The financial report shows that IPG Photonics revenue in the first quarter was 252 million US dollars, a year-on-year decrease of 27%; The net profit was 19 million US dollars, a year-on-year decrease of 75%. The change in foreign exchange rate res...

    2024-05-07
    See translation