English

Micro optical technology based on metasurfaces has become a hot topic

1183
2024-02-02 18:01:29
See translation

Introduction and application of a micro optical platform using metasurfaces
Metasurfaces are artificial materials that excel in manipulating perception. Due to the fact that metasurfaces can reduce the size of lenses to one thousandth of traditional lenses, they have attracted great attention as optical components for miniaturization of next-generation virtual reality, augmented reality, and LiDAR optical systems.

If metasurfaces overcome the challenges of complex manufacturing processes and high production costs and become commercially viable, South Korea may gain significant technological advantages in the field of nanooptics.

A collaborative research group led by Professor Junsuk Rho from the Department of Mechanical Engineering and the Department of Chemical Engineering, along with doctoral students Younghuan Yang, Junhwa Seong, Minseok Choi, and Junkyeong Park (co first authors) from the Department of Mechanical Engineering at Pohang University of Science and Technology, as well as Dr. Gyoseon Jeon, Dr. Kyong il Lee, and Dr. Dong Hyun Yoon from the Institute of Industrial Science and Technology (RIST), published a paper in "Light: Science and Applications".

The title is "Integrated metasurfaces for re vision a near future disruptive optical platform", which summarizes the recent research trends of micro optical platforms based on metasurfaces. They also proposed future research directions and commercialization methods in the journal.

Throughout history, metasurface research has focused on fully manipulating the properties of light, resulting in various optical devices such as metal sensors, metal holograms, and beam diffraction devices. However, recent research has shifted their focus to integrating metasurfaces with other optical components.

The overall concept and prospects of metasurface integration
The research team proposed the research and application of integrated metasurfaces in the paper. These integrated metasurfaces are optical components that can be combined with various standard optical components, such as light-emitting diodes (LEDs) and liquid crystal displays (LCDs). In order to achieve commercialization of metasurfaces, the research team suggests that future research in this field should focus on how to integrate metasurfaces into commonly used devices, making them suitable for daily life.

In addition, the research team emphasized the importance of cooperation between industry and academia, and emphasized the impact of metasurface research on the future optical device industry and national competitiveness. They emphasized that support and cooperation at the national level are crucial for the development of innovative optical platforms.

Professor Junsuk Rho explained, "Integrated metasurfaces are a supplement to existing electronic technologies and represent another innovative solution for various applications. I hope to have sustained efforts, research, and national support to produce more innovative results."

Source: Sohu

Related Recommendations
  • Amplitude launches femtosecond lasers for industrial applications

    Recently, French femtosecond pulse and high peak power (PW class) laser manufacturer Amplitude announced that the company has launched a newly designed Satsuma X femtosecond laser, setting a new benchmark for industrial environments.This product was first announced in 2022 and is now available in a brand new design with proven durability and versatility. In pursuit of excellence and customer satis...

    2024-07-02
    See translation
  • Shanghai Optics and Machinery Institute has made progress in the development of picosecond reflectors based on composite materials

    Recently, the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, has made progress in the research of picosecond reflectors based on composite materials. The relevant research results are titled "Hybrid material based mirror coatings for picosecond laser applications" and published in Optics and Laser Techn...

    2024-06-12
    See translation
  • Safran Group believes that additive manufacturing is playing an increasingly important role in engines

    Safran Group showcased a 3-foot diameter turbine aft casing manufactured using additive manufacturing technology under the RISE technology program at the Paris Air Show in recent years. This component is Safran's largest additive manufacturing component to date, indicating the increasingly widespread application of additive manufacturing in the design and manufacturing of turbofan engines. In ea...

    06-18
    See translation
  • Shanghai Institute of Optics and Fine Mechanics has made progress in composite material based picosecond mirrors

    Recently, the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the research of composite based picosecond mirrors. The related research results were published in Optics and Laser Technology under the title of "Hybrid Material Based Mirror Coatings for Picosed Laser Applications"....

    2024-07-12
    See translation
  • Scientists have used 3D integration technology to bring ultra-low noise lasers without isolators to silicon photonics

    After electronic integrated circuits (Eics), silicon (Si) photonics technology is expected to achieve photonic integrated circuits (PIC) with high density, advanced functions and portability. Although various silicon photonics fountifiers are rapidly developing PIC capabilities to enable mass production of modulators, photodetectors and, more recently, lasers, silicon PIC has not yet met the strin...

    2023-08-04
    See translation