English

Micro optical technology based on metasurfaces has become a hot topic

1122
2024-02-02 18:01:29
See translation

Introduction and application of a micro optical platform using metasurfaces
Metasurfaces are artificial materials that excel in manipulating perception. Due to the fact that metasurfaces can reduce the size of lenses to one thousandth of traditional lenses, they have attracted great attention as optical components for miniaturization of next-generation virtual reality, augmented reality, and LiDAR optical systems.

If metasurfaces overcome the challenges of complex manufacturing processes and high production costs and become commercially viable, South Korea may gain significant technological advantages in the field of nanooptics.

A collaborative research group led by Professor Junsuk Rho from the Department of Mechanical Engineering and the Department of Chemical Engineering, along with doctoral students Younghuan Yang, Junhwa Seong, Minseok Choi, and Junkyeong Park (co first authors) from the Department of Mechanical Engineering at Pohang University of Science and Technology, as well as Dr. Gyoseon Jeon, Dr. Kyong il Lee, and Dr. Dong Hyun Yoon from the Institute of Industrial Science and Technology (RIST), published a paper in "Light: Science and Applications".

The title is "Integrated metasurfaces for re vision a near future disruptive optical platform", which summarizes the recent research trends of micro optical platforms based on metasurfaces. They also proposed future research directions and commercialization methods in the journal.

Throughout history, metasurface research has focused on fully manipulating the properties of light, resulting in various optical devices such as metal sensors, metal holograms, and beam diffraction devices. However, recent research has shifted their focus to integrating metasurfaces with other optical components.

The overall concept and prospects of metasurface integration
The research team proposed the research and application of integrated metasurfaces in the paper. These integrated metasurfaces are optical components that can be combined with various standard optical components, such as light-emitting diodes (LEDs) and liquid crystal displays (LCDs). In order to achieve commercialization of metasurfaces, the research team suggests that future research in this field should focus on how to integrate metasurfaces into commonly used devices, making them suitable for daily life.

In addition, the research team emphasized the importance of cooperation between industry and academia, and emphasized the impact of metasurface research on the future optical device industry and national competitiveness. They emphasized that support and cooperation at the national level are crucial for the development of innovative optical platforms.

Professor Junsuk Rho explained, "Integrated metasurfaces are a supplement to existing electronic technologies and represent another innovative solution for various applications. I hope to have sustained efforts, research, and national support to produce more innovative results."

Source: Sohu

Related Recommendations
  • Nokia and AT&T reach five-year agreement to accelerate fiber optic network upgrade

    Recently, Nokia announced a five-year agreement with AT&T. This agreement aims to fully support and accelerate AT&T's fiber network expansion and upgrade plans by deploying Nokia's Lightspan MF platform and Altiplano access controllers. This cooperation not only marks a deep optimization of the existing fiber optic network, but also heralds the early layout and application of the next ge...

    2024-09-12
    See translation
  • The United States is expected to use "AI+lasers" to deal with space debris in the future

    Due to the increasing threat of space debris in low Earth orbit around the Earth, space agencies around the world are becoming increasingly concerned about this. According to a new study funded by the National Aeronautics and Space Administration (NASA), it may be possible to send space debris that may be at risk of colliding with orbiting spacecraft to safer orbits through a laser network deploye...

    2023-10-20
    See translation
  • Sivers will develop laser arrays for artificial intelligence and deliver prototypes in 2024

    Sivers Optics, a subsidiary of Sivers Semiconductors, has signed a product development agreement with an undisclosed company.Starting from the initial contract worth $1.3 million, the prototype will be delivered in 2024, and it is expected that the agreement will grow rapidly in 2025 before transitioning to mass production. After entering full production, customers expect the annual chip productio...

    2024-03-18
    See translation
  • Researchers use laser doping to enhance the oxidation of IBC solar cells

    Researchers from the International Solar Research Center at Konstanz and Delft University of Technology have discovered a method to pattern the back end of a cross finger rear contact battery, improving its efficiency by making certain parts of the solar cell thicker.Researchers have developed a new technology that enhances oxidation in selected areas by patterning the back or back of IBC solar ce...

    2024-02-20
    See translation
  • Researchers at the Technion-Israel Institute of Technology have developed coherently controlled spin optical lasers based on single atomic layers

    Researchers at the Technion-Israel Institute of Technology have developed a coherently controlled spin optical laser based on a single atomic layer.This discovery was made possible by coherent spin-dependent interactions between a single atomic layer and a laterally constrained photonic spin lattice, which supports a high-Q spin valley through Rashaba-type spin splitting of photons of bound states...

    2023-09-12
    See translation