English

Researchers have demonstrated a breakthrough boson sampling method using ultracold atoms in optical lattices

1250
2024-05-10 15:55:13
See translation

JILA researcher, National Institute of Standards and Technology (NIST) physicist, physics professor Adam Kaufman and his team at the University of Colorado Boulder, as well as NIST collaborators, demonstrated a new method of cross laser beam lattice sampling using ultracold atoms for boson sampling in two-dimensional optics. This study, recently published in the journal Nature, marks a significant leap in past achievements in computer simulation or photons.



Applying optical tweezers to large-scale Hubbard systems
Researchers used cutting-edge technology, including optical tweezers and advanced cooling methods, to prepare specific patterns of up to 180 strontium atoms in a lattice of 1000 points. By minimizing the motion of atoms and ensuring they remain in the lowest energy state, the team reduced noise and decoherence, which are common challenges in quantum experiments.

Kaufman said, "Optical tweezers have achieved groundbreaking experiments in multibody physics, typically used to study interacting atoms, where atoms are fixed in space and interact over long distances." "However, when particles can both interact and tunnel, and quantum mechanics spreads in space, a fundamental class of multibody problems arises - the so-called 'Hubbard' system. In the early stages of establishing this experiment, our goal was to apply this tweezer paradigm to large-scale Hubbard systems - this article marks the first realization of this vision."

Confirm high fidelity through scaling testing
Due to the complexity of boson sampling, it is not feasible to directly verify the correct sampling task of 180 atomic experiments. To overcome this issue, researchers sampled atoms of different scales and compared the measurement results with simulations of reasonable error models involving intermediate scale experiments.

"We tested with two atoms and we have a good understanding of what is happening. Then, at an intermediate scale where we can still simulate things, we can compare our measurement results with simulations involving reasonable error models in our experiments. On a large scale, we can continuously change the difficulty of the sampling task by controlling the distinguishability of atoms and confirm that there are no major issues," said Aaron Young, the first author and former JILA graduate student.

This work demonstrates the high-quality and programmable preparation, evolution, and detection of atoms in the lattice, which can be applied to atomic interactions, opening up new methods for simulating and studying the behavior of real and poorly known quantum materials.

Source: Laser Net

Related Recommendations
  • Afinum Management acquires significant stakes in two laser companies

    Recently, Afinum Management, a private equity firm based in Munich, Germany, has acquired a large stake in two laser companies, with the intention of opening up new laser markets by combining the strengths of three parties.According to media reports, the two companies are ARC Laser in Germany and GNS neo Laser in Israel, and Afinum has agreed with the founders of the two companies that the acquisi...

    2024-08-08
    See translation
  • The tesat optical terminal selected by Lockheed Martin satellite has passed ground testing

    Tesat Spacecom's laser communication terminal announced on October 26th that the company has passed critical ground testing deployed on NASA satellites.Tesat's SCOTT80 optical terminal was selected by Lockheed Martin, one of several manufacturers producing satellites for the Space Development Agency.SDA is an agency under the United States Space Force that plans to deploy a network of interconnect...

    2023-10-27
    See translation
  • Laser-induced graphene sensor can diagnose diabetes through breath samples

    In the U.S., one in five of the 37 million adults who has diabetes is not aware of it (according to the U.S. CDC – Centers for Disease Control & Prevention). Current methods of diagnosing diabetes and prediabetes usually require a visit to a doctor’s office or lab work, both of which can be expensive and time-consuming. Now, diagnosing diabetes and prediabetes may be as simple as breathing. ...

    09-08
    See translation
  • Fraunhofer ILT develops laser beam shaping platform to optimize PBF-LB process

    Recently, the German research institution Fraunhofer ILT team is collaborating with the Department of Optical Systems Technology (TOS) at RWTH Aachen University to develop a testing system aimed at studying complex laser beam profiles using a new platform. This platform can construct customized beam profiles for laser powder melting (PBF-LB) 3D printing, thereby improving part quality, process sta...

    2024-12-23
    See translation
  • Wearable Breakthrough! A rubber like deformable energy storage device using laser precision manufacturing

    Recently, foreign researchers have made remarkable breakthroughs in the field of flexible energy storage devices, successfully developing a small energy storage device that can stretch, twist, fold, and wrinkle freely. This significant achievement has been published in the journal npj Flexible Electronics.With the booming development of wearable technology, the demand for energy storage solutions ...

    2024-04-26
    See translation