English

Researchers have demonstrated a breakthrough boson sampling method using ultracold atoms in optical lattices

900
2024-05-10 15:55:13
See translation

JILA researcher, National Institute of Standards and Technology (NIST) physicist, physics professor Adam Kaufman and his team at the University of Colorado Boulder, as well as NIST collaborators, demonstrated a new method of cross laser beam lattice sampling using ultracold atoms for boson sampling in two-dimensional optics. This study, recently published in the journal Nature, marks a significant leap in past achievements in computer simulation or photons.



Applying optical tweezers to large-scale Hubbard systems
Researchers used cutting-edge technology, including optical tweezers and advanced cooling methods, to prepare specific patterns of up to 180 strontium atoms in a lattice of 1000 points. By minimizing the motion of atoms and ensuring they remain in the lowest energy state, the team reduced noise and decoherence, which are common challenges in quantum experiments.

Kaufman said, "Optical tweezers have achieved groundbreaking experiments in multibody physics, typically used to study interacting atoms, where atoms are fixed in space and interact over long distances." "However, when particles can both interact and tunnel, and quantum mechanics spreads in space, a fundamental class of multibody problems arises - the so-called 'Hubbard' system. In the early stages of establishing this experiment, our goal was to apply this tweezer paradigm to large-scale Hubbard systems - this article marks the first realization of this vision."

Confirm high fidelity through scaling testing
Due to the complexity of boson sampling, it is not feasible to directly verify the correct sampling task of 180 atomic experiments. To overcome this issue, researchers sampled atoms of different scales and compared the measurement results with simulations of reasonable error models involving intermediate scale experiments.

"We tested with two atoms and we have a good understanding of what is happening. Then, at an intermediate scale where we can still simulate things, we can compare our measurement results with simulations involving reasonable error models in our experiments. On a large scale, we can continuously change the difficulty of the sampling task by controlling the distinguishability of atoms and confirm that there are no major issues," said Aaron Young, the first author and former JILA graduate student.

This work demonstrates the high-quality and programmable preparation, evolution, and detection of atoms in the lattice, which can be applied to atomic interactions, opening up new methods for simulating and studying the behavior of real and poorly known quantum materials.

Source: Laser Net

Related Recommendations
  • Youil Energy Tech suffered a loss of up to 65%

    In recent years, the secondary battery equipment sector in South Korea has been hit by a wave of disruption, with demand temporarily stagnant and stock prices struggling to gain support. Especially for Youil Energy Tech, a manufacturer of secondary battery equipment, as the company is a latecomer to the laser equipment market, its sales cost burden is relatively high. It is expected that in the fu...

    04-12
    See translation
  • TYVOK Releases K1: The Ultimate 100W CO₂ Laser Engraver for Makers and Designers

    TYVOK, industry leaders in laser engraving technology, just announced the launch of TYVOK K1, a modular CO₂ laser engraver engineered to give makers, designers, schools, and small businesses industrial power with intuitive design and user-friendly operation. TYVOK K1 blends a true 100W optical CO₂ laser engine with precision motion control, a rigid, level platform, and professional-grade safety sy...

    09-16
    See translation
  • Devices based on optical thermodynamics can guide light without the need for switches

    Researchers from Ming Hsieh's Department of Electrical and Computer Engineering at the University of Southern California have designed the first optical device that follows the emerging optical thermodynamic framework.The work, reported in Nature Photonics, introduces a new way of routing light in nonlinear systems—meaning systems that do not require switches, external control, or digital addressi...

    10-15
    See translation
  • A Large Angle Color Holographic 3D Display System Based on Color LCD Grating

    Holographic display technology provides the ultimate solution for true 3D display, with enormous potential in augmented reality and virtual reality. However, the color and viewing angle of holographic 3D displays mainly depend on the wavelength of the laser and the pixel size of the current spatial light modulator. The inevitable color difference and narrow viewing angle in conventional systems se...

    2024-01-24
    See translation
  • Lumentum acquires Hong Kong optical module manufacturer Cloud Light to expand its influence in cloud data centers and network infrastructure

    On October 30th, Lumentum announced the acquisition of Hong Kong optical module manufacturer Cloud Light for $750 million (approximately RMB 5.48 billion), with the aim of expanding its influence in cloud data centers and network infrastructure.It is understood that Cloud Light is a Hong Kong company that provides various optical product solutions, mainly focusing on designing and manufacturing ad...

    2023-11-01
    See translation