English

Researchers have demonstrated a breakthrough boson sampling method using ultracold atoms in optical lattices

1179
2024-05-10 15:55:13
See translation

JILA researcher, National Institute of Standards and Technology (NIST) physicist, physics professor Adam Kaufman and his team at the University of Colorado Boulder, as well as NIST collaborators, demonstrated a new method of cross laser beam lattice sampling using ultracold atoms for boson sampling in two-dimensional optics. This study, recently published in the journal Nature, marks a significant leap in past achievements in computer simulation or photons.



Applying optical tweezers to large-scale Hubbard systems
Researchers used cutting-edge technology, including optical tweezers and advanced cooling methods, to prepare specific patterns of up to 180 strontium atoms in a lattice of 1000 points. By minimizing the motion of atoms and ensuring they remain in the lowest energy state, the team reduced noise and decoherence, which are common challenges in quantum experiments.

Kaufman said, "Optical tweezers have achieved groundbreaking experiments in multibody physics, typically used to study interacting atoms, where atoms are fixed in space and interact over long distances." "However, when particles can both interact and tunnel, and quantum mechanics spreads in space, a fundamental class of multibody problems arises - the so-called 'Hubbard' system. In the early stages of establishing this experiment, our goal was to apply this tweezer paradigm to large-scale Hubbard systems - this article marks the first realization of this vision."

Confirm high fidelity through scaling testing
Due to the complexity of boson sampling, it is not feasible to directly verify the correct sampling task of 180 atomic experiments. To overcome this issue, researchers sampled atoms of different scales and compared the measurement results with simulations of reasonable error models involving intermediate scale experiments.

"We tested with two atoms and we have a good understanding of what is happening. Then, at an intermediate scale where we can still simulate things, we can compare our measurement results with simulations involving reasonable error models in our experiments. On a large scale, we can continuously change the difficulty of the sampling task by controlling the distinguishability of atoms and confirm that there are no major issues," said Aaron Young, the first author and former JILA graduate student.

This work demonstrates the high-quality and programmable preparation, evolution, and detection of atoms in the lattice, which can be applied to atomic interactions, opening up new methods for simulating and studying the behavior of real and poorly known quantum materials.

Source: Laser Net

Related Recommendations
  • Panacol showcases a new optical grade adhesive on Photonics West

    Panacol will showcase new optical grade resins and adhesives for embossing and optical bonding applications at the SPIE Photonics West exhibition held in San Francisco, California, USA from January 30 to February 1, 2024.These new adhesives can be used for sensors in lightweight carpets, smart devices, and wearable devices in the automotive industry, or for generating structured light in projector...

    2023-12-12
    See translation
  • SPIE Optics and Photonics 2025: Plenary Session Evaluation of Organic Materials for Optoelectronics

    The use of organic materials in photonics has given rise to many device innovations for applications in sensing, semiconductors, lasers, and more. The Organic Photonics + Electronics plenary session at SPIE Optics + Photonics 2025, taking place through 7 August in San Diego, California, sampled some current research efforts in this subfield, and looked at developments on the horizon.Ruth Shinar d...

    08-06
    See translation
  • Researchers prepare a new type of optical material with highly tunable refractive index

    It is reported that researchers from Beijing University of Chemical Technology and BOE Technology Group Co., Ltd. have collaborated to develop a transparent organic-inorganic composite optical adhesive material with highly tunable refractive index. The related research paper was recently published in Engineering.In the early days, glass was the main raw material for optical components. In recent y...

    2024-06-25
    See translation
  • Researchers at the Technion-Israel Institute of Technology have developed coherently controlled spin optical lasers based on single atomic layers

    Researchers at the Technion-Israel Institute of Technology have developed a coherently controlled spin optical laser based on a single atomic layer.This discovery was made possible by coherent spin-dependent interactions between a single atomic layer and a laterally constrained photonic spin lattice, which supports a high-Q spin valley through Rashaba-type spin splitting of photons of bound states...

    2023-09-12
    See translation
  • Mears Machine Corporation achieves breakthrough in large-scale powder bed laser manufacturing

    Mears Machine Corporation has achieved a global breakthrough by manufacturing the world's largest single unit unwelded powder bed laser components. More details about this revolutionary manufacturing solution will be revealed in the coming months. "This milestone unlocks a new era in large-format metal additive manufacturing," said James Lloyd, CEO of Mears Machine Corporation. "We can now deliv...

    11-08
    See translation