English

Researchers use non classical light to achieve multi photon electron emission

958
2024-05-20 15:23:40
See translation

Strong field quantum optics is a rapidly emerging research topic that integrates nonlinear optoelectronic emission elements rooted in strong field physics with the mature field of quantum optics. Although the distribution of light particles (i.e. photons) has been widely recorded in both classical and non classical light sources, the impact of this distribution on the photoelectric emission process is still poorly understood.

Researchers from Friedrich Alexander University (FAU) in Erlangen Nuremberg and the Max Planck Institute for Photoscience have recently begun exploring the interaction between light and matter through non classical light sources to fill this gap in the literature. Their paper published in the journal Nature Physics suggests that the photon statistics driving the light source are printed on the electron count statistics emitted by metal needle tips, and this observation may have interesting implications for the future development of optical devices.

The co-author and FAU researcher Jonas Heimerl of the paper told Phys.org, "The field of strong field physics has now been highly developed, as evidenced by the Nobel Prize in Physics in 2023." "This physical phenomenon is not limited to atoms, but also occurs on metal surfaces, such as metal needles. A similar and more diverse development is in the field of quantum optics. One aspect of this field is the use of non classical light statistics to generate light, such as bright compressed vacuum."

The main objective of Heimer and his collaborators' latest research is to understand how quantum light originating from non classical light sources interacts with matter. It is worth noting that so far, only classical light sources have been used to explore the interaction between quantum light and matter.

"Our neighbor Professor Maria Chekhova is a world leading expert in the field of bright compressed vacuum generation, a special form of non classical light," co author and FAU researcher Peter Hommelhoff told Phys Org. "Therefore, we collaborated with her and Ido Kaminer, a long-term partner at the Israel Institute of Technology, to study electron emission driven by non classical light."

Heimer, Homerhoff, and their research team at FAU collaborated closely with researcher Chekhova, who has extensive expertise in the field of quantum optics, to conduct experiments. Chekhova is known for her work in the generation of bright compressed vacuum, which requires the use of nonlinear optical processes to generate bright compressed vacuum (a type of non classical light).

"In our experiment, we used this non classical light source to trigger the photoelectric emission process of a metal needle tip with a size of only a few tens of nanometers," explained Heimer. "It can be regarded as Einstein's famous photoelectric effect, but modern light sources exhibit extreme intensity and fluctuations within each laser pulse."

For each laser pulse generated, researchers calculated the number of electrons in both classical and non classical light sources. Interestingly, they found that the number of electrons can be directly influenced by the driving light.

"Our findings may be of great interest to people, especially for electronic imaging applications such as biomolecular imaging," said Heimer
As is well known, biomolecules are highly susceptible to damage, and reducing the electron dose used for imaging these molecules can reduce the risk of such damage. Heimerl et al.'s paper. It is possible to modulate the number of electrons to meet the specific application requirements.
"However, before we can solve this problem, we must prove that we can also imprint another type of photon distribution on electrons, which is the photon distribution with reduced noise, but this may be difficult to achieve," said Homelhoff.

The discovery of this latest work may soon bring new opportunities for the study of strong field quantum optics. Meanwhile, they can serve as the foundation for new devices, including sensors and strong field optical devices that utilize the interaction between quantum light and electrons.

Source: Laser Net

Related Recommendations
  • Munich Laser World of Photonics 2025 Grand Opening

    On June 24-27, 2025, the global optoelectronic event Laser World of Photonics 2025 was grandly opened in Munich, Germany. This exhibition brings together over 1350 companies from 43 countries, making it the largest in history. Among them, international laser giants Coherent, IPG, TRUMPF, and MKS showcased their latest breakthroughs and future directions in laser technology with multiple heavyweigh...

    06-25
    See translation
  • Changguang Huaxin's revenue in the first half of the year was 142 million yuan, and its net profit decreased by 117.97% year-on-year

    On August 30th, Changguang Huaxin released its results for the first half of 2023. In the first half of this year, the company achieved a revenue of 142 million yuan, a year-on-year decrease of 43.23%; Net profit attributable to shareholders of the listed company -10.6374 million yuan, a year-on-year decrease of 117.97%.Due to macroeconomic factors such as a slowdown in economic growth, market con...

    2023-08-31
    See translation
  • IPG Photonics has unveiled a new dual-beam laser with single-mode core power at the Novi Battery Show in Michigan

    IPG Photonics Corporation, a global leader in fiber laser technology, will highlight new and innovative laser solutions at the Battery Show from September 12 to 14, 2023 in Novi, Michigan, USA.The IPG booth will include industry-leading fiber laser sources and automated laser systems for electric vehicle battery welding applications.New laser technology pushes the limits of battery welding speedTo...

    2023-09-12
    See translation
  • Using attosecond pulses to reveal new information about the photoelectric effect

    Scientists from the Stanford National Accelerator (SLAC) laboratory of the US Department of Energy have revealed new information about the photoelectric effect using attosecond pulses: the delay time of photoelectric emission is as long as 700 attosecond, far exceeding previous expectations. The latest research challenges existing theoretical models and helps to reveal the interactions between ele...

    2024-09-02
    See translation
  • Focusing on Lithuanian solid-state and fiber laser manufacturer EKSPLA

    In this interview, Dr. Antonio Castelo, EPIC Biomedical and Laser Technology Manager, had a conversation with Aldas Juronis, CEO of EKSPLA, a Lithuanian innovative solid-state and fiber laser manufacturer.What is the background of your appointment as the CEO of EKSPLA?In 1994, I graduated from Kaonas University of Technology in Lithuania with a Bachelor's degree in Radio Electronic Engineering. At...

    2023-11-07
    See translation