English

Researchers use non classical light to achieve multi photon electron emission

916
2024-05-20 15:23:40
See translation

Strong field quantum optics is a rapidly emerging research topic that integrates nonlinear optoelectronic emission elements rooted in strong field physics with the mature field of quantum optics. Although the distribution of light particles (i.e. photons) has been widely recorded in both classical and non classical light sources, the impact of this distribution on the photoelectric emission process is still poorly understood.

Researchers from Friedrich Alexander University (FAU) in Erlangen Nuremberg and the Max Planck Institute for Photoscience have recently begun exploring the interaction between light and matter through non classical light sources to fill this gap in the literature. Their paper published in the journal Nature Physics suggests that the photon statistics driving the light source are printed on the electron count statistics emitted by metal needle tips, and this observation may have interesting implications for the future development of optical devices.

The co-author and FAU researcher Jonas Heimerl of the paper told Phys.org, "The field of strong field physics has now been highly developed, as evidenced by the Nobel Prize in Physics in 2023." "This physical phenomenon is not limited to atoms, but also occurs on metal surfaces, such as metal needles. A similar and more diverse development is in the field of quantum optics. One aspect of this field is the use of non classical light statistics to generate light, such as bright compressed vacuum."

The main objective of Heimer and his collaborators' latest research is to understand how quantum light originating from non classical light sources interacts with matter. It is worth noting that so far, only classical light sources have been used to explore the interaction between quantum light and matter.

"Our neighbor Professor Maria Chekhova is a world leading expert in the field of bright compressed vacuum generation, a special form of non classical light," co author and FAU researcher Peter Hommelhoff told Phys Org. "Therefore, we collaborated with her and Ido Kaminer, a long-term partner at the Israel Institute of Technology, to study electron emission driven by non classical light."

Heimer, Homerhoff, and their research team at FAU collaborated closely with researcher Chekhova, who has extensive expertise in the field of quantum optics, to conduct experiments. Chekhova is known for her work in the generation of bright compressed vacuum, which requires the use of nonlinear optical processes to generate bright compressed vacuum (a type of non classical light).

"In our experiment, we used this non classical light source to trigger the photoelectric emission process of a metal needle tip with a size of only a few tens of nanometers," explained Heimer. "It can be regarded as Einstein's famous photoelectric effect, but modern light sources exhibit extreme intensity and fluctuations within each laser pulse."

For each laser pulse generated, researchers calculated the number of electrons in both classical and non classical light sources. Interestingly, they found that the number of electrons can be directly influenced by the driving light.

"Our findings may be of great interest to people, especially for electronic imaging applications such as biomolecular imaging," said Heimer
As is well known, biomolecules are highly susceptible to damage, and reducing the electron dose used for imaging these molecules can reduce the risk of such damage. Heimerl et al.'s paper. It is possible to modulate the number of electrons to meet the specific application requirements.
"However, before we can solve this problem, we must prove that we can also imprint another type of photon distribution on electrons, which is the photon distribution with reduced noise, but this may be difficult to achieve," said Homelhoff.

The discovery of this latest work may soon bring new opportunities for the study of strong field quantum optics. Meanwhile, they can serve as the foundation for new devices, including sensors and strong field optical devices that utilize the interaction between quantum light and electrons.

Source: Laser Net

Related Recommendations
  • Medical implant manufacturers have announced the launch of ultra-short pulse lasers for cutting applications

    Norman Noble, the world's leading contract manufacturer of next-generation medical implants, today announced the launch of the Noble STEALTH HP, an ultrashort pulse laser for the fabrication of innovative medical devices and implants.It is reported that the laser is mainly equipped with a high-power laser cutting system, which can achieve high-quality cutting results without heat affected zone (HA...

    2023-09-12
    See translation
  • The constantly developing world of all-weather laser satellite communication

    Using light beams for communication is not a new idea, even outside of Star Trek, Star Wars, and other similar fantasy stories. Scientist and science fiction writer Arthur Clark predicted that beam communication, at that time modern satellite communication was just a dream.In 1975, the magazine published an article about laser communication or laser communication equipment. The demonstrati...

    2023-12-01
    See translation
  • Overview of Residual Stress in Metal Additive Manufacturing: Detection Techniques, Numerical Simulation, and Mitigation Strategies

    Researchers from Shantou University have reported a review of residual stresses in metal additive manufacturing: detection techniques, numerical simulations, and mitigation strategies. The relevant paper titled "A comprehensive review of residual stress in metal additive manufacturing: detection techniques, numerical simulations, and mitigation strategies" was published in the Journal of the Brazi...

    2024-12-20
    See translation
  • Marvel Fusion received an additional € 50 million in Series B funding

    Recently, Marvel Fusion, which focuses on developing laser fusion energy systems, announced that the company has received an additional € 50 million in Series B funding. This latest investment is provided by EQT Venture Capital and Siemens Energy, and is also the first investment of the European Innovation Council (EIC) fund in fusion energy. In addition to the 63 million euros investment announce...

    04-08
    See translation
  • Scientists develop high-power fiber lasers to power nanosatellites

    The use of lasers in space is a reality. Although radio waves have been the backbone of space communication for many years, the demand for faster transmission of more data has made these lighter, more flexible, and safer infrared rays the future of space communication.Recently, WipThermal is a European project dedicated to developing groundbreaking solutions for wireless energy transmission in the...

    2024-01-18
    See translation