English

CO2 laser cutting machine for battery shell shaped parts: an innovative tool in energy technology manufacturing

1167
2023-12-25 14:01:12
See translation

The development of new energy technology has made battery technology the engine for advancing clean energy. In battery manufacturing, the cutting of battery shell shaped parts is a crucial step. CO2 laser cutting machines have become an innovative tool for promoting the development of this field due to their high efficiency and precision. This article will delve into the important characteristics of this laser technology and its key role in battery manufacturing.

The manufacturing of battery shell shaped parts involves complex shapes and contours, and traditional cutting methods are difficult to meet high-precision and shaped requirements. CO2 laser cutting achieves precise and clear cutting of various irregular parts through highly focused laser beams. This high precision directly affects the quality and performance of battery packaging, making the battery more reliable under extreme conditions.

CO2 laser cutting machines have a high level of automation. With the help of advanced CNC technology, automatic cutting is achieved through preset programs without the need for complex manual operations. Improve production efficiency while reducing the impact of human factors, ensuring the consistency and quality of battery shell shaped parts.

The thermal impact during laser cutting is minimal, reducing material thermal deformation and maintaining cutting edge accuracy. This is a significant breakthrough in the manufacturing of batteries with high packaging requirements.

CO2 laser cutting machines also face challenges in application, such as high investment costs and operational difficulties. The industry needs to work together to increase research and development promotion efforts and promote its widespread application in the field of battery manufacturing.

Source: Laser Net

Related Recommendations
  • Development, Share, and Industry Insights of the US Laser Processing Market in 2025

    The global laser processing market is expected to grow from $4.2 billion in 2023 to $7.73 billion in 2031, with a compound annual growth rate (CAGR) expected to reach 8.1% during this forecast period. According to DataM Intelligence Comprehensive Report has released its latest report on the "Laser Processing Market Size 2025," providing a detailed analysis of market trends, key growth drivers, c...

    11-13
    See translation
  • Top management changes at Laser Photonics Corp., a US laser equipment manufacturer

    Recently, Laser Photonics Corp. (LPC), a Nasdaq listed equipment developer, announced that it has appointed John T. Armstrong as its new Executive Vice President. Before assuming his position at LPC, Armstrong served as Vice President of Astronics Test Systems, a subsidiary of Astronics Corporation, a global leader in advanced technology and products in critical mission areas such as aerospace a...

    2024-11-20
    See translation
  • 国内自主研发首套碳化硅晶锭激光剥离设备投产

           近日,从江苏通用半导体有限公司传来消息,由该公司自主研发的国内首套的8英寸碳化硅晶锭激光全自动剥离设备正式交付碳化硅衬底生产领域头部企业广州南砂晶圆半导体技术有限公司,并投入生产。 图:8英寸SiC晶锭激光全自动剥离设备       该设备可实现6英寸和8英寸碳化硅晶锭的全自动分片,包含晶锭上料、晶锭研磨、激光切割、晶片分离和晶片收集,一举填补了国内碳化硅晶锭激光剥离设备领域研发、制造的市场空白,突破了国外的技术封锁,将极大地提升我国碳化硅芯片产业的自主化、产业化水平。       该设备年可剥离碳化硅衬底20000片,实现良率95%以上,与传统的线切割工艺相比,大幅降低了产品损耗,而设备售价仅仅是国外同类产品的1/3。       近年来,碳化硅功率器件在大功率半导体市场中所占的份额不断提高,并被广泛应用于新能源汽车、城市轨道交通、风力发电、高速移动、物联网等一系列领域...

    2024-08-26
    See translation
  • The application of laser technology in the automated production line of energy storage/power battery PACK

    Lithium batteries are highly favored in the fields of 3C digital and new energy vehicles due to their high energy density, environmental characteristics, and fast charging and discharging. Welding, as a crucial link in the manufacturing process of lithium batteries, has a decisive impact on battery performance and quality. Laser welding technology is increasingly playing an important role in the l...

    2023-12-18
    See translation
  • Fundamentals of Next Generation Photonic Semiconductors: Small Lasers

    This week, an illustration was published on the cover of the international journal Science, showcasing a powerful mode-locked laser emitted from a miniature photonic semiconductor.A research team led by Alireza Marandi, a professor of electrical engineering and applied physics at the California Institute of Technology, has successfully developed a conventional mode-locked laser large enough to fit...

    2023-11-13
    See translation