English

New research on achieving femtosecond laser machining of multi joint micromachines

1074
2023-09-15 14:06:09
See translation

The team of Wu Dong, professor of the Micro/Nano Engineering Laboratory of University of Science and Technology of China, proposed a processing strategy of femtosecond laser two in one writing into multiple materials, manufactured a micromechanical joint composed of temperature sensitive hydrogel and metal nanoparticles, and then developed a multi joint humanoid micromachine with multiple deformation modes (>10). The relevant research results were recently published in Nature Communications.

In recent years, femtosecond laser two-photon polymerization technology has been widely used as a true three-dimensional machining method with nano precision to manufacture various functional microstructures. These microstructures exhibit broad application prospects in fields such as micro nano optics, micro sensors, and micro machine systems. However, it is still highly challenging to utilize femtosecond lasers to achieve composite multi material processing and further construct multimodal micro/nano machinery.

Femtosecond laser two in one processing strategy includes the use of asymmetric two-photon polymerization to build hydrogel joints, and laser reduction deposition of silver nanoparticles in the local area of the joint. Among them, the asymmetric photopolymerization technology makes the cross-linking density of the local area of the hydrogel micro joint produce anisotropy, and finally enables it to realize the bending deformation with controllable direction and angle.

In situ laser reduction deposition can accurately process silver nanoparticles on hydrogel joints. These silver nanoparticles have a strong photothermal conversion effect, which enables the mode switching of multi joint micromachines to exhibit excellent characteristics such as ultra-short response time (30 milliseconds) and ultra-low driving power (<10 milliwatts).

As a typical example, 8 micro joints are integrated into a humanoid micromachine. Subsequently, researchers utilized spatial light modulation technology to achieve multifocal beams in 3D space, thereby accurately stimulating each micro joint. The collaborative deformation between multiple joints promotes the completion of multiple reconfigurable deformation modes in humanoid micro robotic arms. Finally, at the micrometer scale, humanoid micromachines "danced".

In concept validation, by designing the distribution and deformation direction of micro joints, a dual joint micro robotic arm can collect multiple micro particles in the same and opposite directions. In summary, the femtosecond laser two in one machining strategy can construct deformable micro joints in various local areas of three-dimensional microstructures, achieving various reconfigurable deformation modes.
Researchers have introduced that micro robotic arms with multiple deformation modes will exhibit broad application prospects in micro cargo collection, microfluidic manipulation, and cell manipulation.

Source: Micro and Nano Engineering Laboratory, University of Science and Technology of China

Related Recommendations
  • Breaking the production record! Laser and lithium achieve ammonia production under environmental conditions for the first time

    The application of laser technology has revolutionized the methods of nitrogen fixation, providing a new method for synthesizing ammonia under environmental conditions. Recently, researchers have used commercial carbon dioxide lasers for the first time to disrupt the nitrogen nitrogen triple bond, providing a new green alternative to the Haber Bosch process.It is reported that the international re...

    2023-10-16
    See translation
  • Teledyne Technologies acquires a portion of its optoelectronic business

    Recently, Teledyne Technologies announced that it has reached an agreement to acquire a portion of Excelitas Technologies' aerospace and defense electronics business for $710 million in cash.This acquisition includes the optical systems business under the Qioptiq brand headquartered in North Wales, UK, as well as the Advanced Electronic Systems (AES) business headquartered in the United States.It ...

    2024-11-12
    See translation
  • Marvin Panaco launches the Mastersizer 3000 for laser diffraction particle size determination+

    Marvin Panaco, a subsidiary of Spectris plc located in Egham, Surrey, UK, announced the launch of its new laser diffraction particle size measurement instrument Mastersizer 3000+. Mastersizer 3000+utilizes integrated artificial intelligence and data science driven software solutions, providing method development support, data quality feedback, instrument monitoring, and troubleshooting recommendat...

    2024-03-22
    See translation
  • Overview of Residual Stress in Metal Additive Manufacturing: Detection Techniques, Numerical Simulation, and Mitigation Strategies

    Researchers from Shantou University have reported a review of residual stresses in metal additive manufacturing: detection techniques, numerical simulations, and mitigation strategies. The relevant paper titled "A comprehensive review of residual stress in metal additive manufacturing: detection techniques, numerical simulations, and mitigation strategies" was published in the Journal of the Brazi...

    2024-12-20
    See translation
  • Southern Stoneworks revolutionizes countertop installation in Orlando with innovative laser technology

    A good countertop can make a home better. In that spirit, Southern Stoneworks, Orlando's leading countertop manufacturer and installer, has set a new standard in the industry by incorporating advanced laser technology into its processes. Utilizing state-of-the-art laser-guided saws and tools, the company has significantly reduced the time required to measure, manufacture, and install kitchen count...

    2023-08-04
    See translation