English

SILICON AUSTRIA LABS and EV GROUP Strengthen Cooperation in Optical Technology Research

7
2023-11-15 14:06:51
See translation

EV Group, a leading supplier of wafer bonding and lithography equipment for the MEMS, nanotechnology, and semiconductor markets, and Silicon Austria Labs, a leading electronic systems research center in Austria, announced that SAL has received and installed multiple EVG lithography and photoresist processing systems in its MicroFab at the R&D cleanroom facility in Filach, Austria.

These devices are part of the strengthened cooperation between the two companies, aimed at accelerating the development and deployment of advanced optical technologies for heterogeneous integrated applications, including wafer level optical devices for micro cameras and mirrors, diffractive optical devices, and automotive optical devices for autonomous driving and automotive lighting.

The newly installed EVG system includes LITHOSCALE maskless exposure system, EVG7300 automated SmartNIL nanoimprinting and wafer level optical system, as well as multiple complementary photoresist processing systems. These systems incorporate multiple existing EVG bonding, mask alignment, and lithography systems from SAL, including the first installation of the next-generation 200mm version of the EVG150 automatic photoresist processing system. Compared to the previous generation platform, this system provides higher throughput, greater flexibility, and smaller tool footprint.

In addition, SAL has been working closely with the technical development and application engineering teams at EVG headquarters, including the NILPhotonics capability center, to leverage EVG's equipment and process knowledge to develop processes that can be transferred and expanded to mass production.

Dr. Mohssen Moridi, Director of Microsystem Research at Silicon Australia Labs, stated: We have recently been immersed in a series of cutting-edge research and development projects, involving metaoptics, integrated photonics, and MEMS, which require the use of advanced lithography and bonding tools. Through our valuable collaboration with EVG, we have obtained tools with excellent reliability and accuracy, which are crucial for successful research and development work. It is worth noting that the EVG7300 SmartNIL system has become a key tool that can be used on a large scale for emerging photonics and MEMS devices Produce nanostructures. Its applications extend to multiple fields such as intelligent lighting systems, AR/VR, automotive optics, telecommunications, and quantum technology.

SAL was one of the first customers to obtain the new EVG7300 system, which is EVG's most advanced solution that combines multiple UV based process capabilities, such as nanoimprint lithography, lens forming, and lens stacking. The EVG7300 is specifically developed to meet the advanced research and production needs of various emerging applications, involving micro and nano patterns as well as functional layer stacking.

EVG's revolutionary LITHOSCALE maskless exposure system meets the lithography needs of markets and applications that require high flexibility or product changes. It solves traditional bottlenecks by combining powerful digital processing capabilities, high structured resolution, and throughput scalability. It is very suitable for rapid prototyping design, providing fast turnaround and development cycle time.

Thomas Glinner, Technical Director of EV Group, stated: Silicon Australia Labs is a leading research center in the field of optical miniaturization and heterogeneous integration, and a strategic partner of EV Group. The latest shipment and installation of our advanced lithography and photoresist processing systems further strengthen our partnership and support SAIC's ability to develop future key technologies and apply our leading solutions to practical industrial applications.

Source: Laser Network

Related Recommendations
  • New progress in research on laser cleaning and improving the damage threshold of fused quartz components at Shanghai Optics and Machinery Institute

    Recently, the research team of the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, has made new progress in the study of improving the damage threshold of fused quartz elements through laser cleaning. The study proposes for the first time the use of microsecond pulse CO2 laser cleaning to enhance the dam...

    07-08
    See translation
  • Halloween\Christmas Laser Processing Art Carnival !!

    Chanelink Halloween\Christmas Laser Processing Art CarnivalShow your design talent and win a cool laser engraver cutter.TimeUpload of work and canvassing period: October 25, 2023 - December 25, 2023Winner announcement time : December 29, 2023ContentEligible participant:Laser industry practitioners, enthusiasts, who must be at least 18 years old.Awards:First prize (1...

    2023-10-25
    See translation
  • 2D photoelectric neuron array can achieve broadband and low loss optical nonlinearity accessible to ambient light

    Light can calculate functions during propagation and interaction with structured materials, with fast speed and low energy consumption. The use of all optical neural networks for general computing requires an optical activation layer with nonlinear dependence on the input. However, existing optical nonlinear materials either have slow speeds or very weak nonlinearity at the level of natural light ...

    03-20
    See translation
  • HP100A-50KW-GD laser power detector for measuring extremely high power laser beams

    The HP100A-50KW-GD laser power detector is mainly designed for manufacturers of high-power lasers and laser systems, factories that use high-power lasers to cut thick metal parts, and military applications.The HP100A-50KW-GD adopts a gold reflector cone and a reduced back reflection geometry, which can capture 97% of incident light and process up to 50 kW of continuous laser power. The back reflec...

    01-16
    See translation
  • Breakthrough in Silicon Based Room Temperature Continuous Wave Topological Dirac Vortex Microcavity Laser

    With the explosive growth of data traffic, the market is extremely eager for hybrid photonic integrated circuits that can combine various optical components on a single chip.Silicon is an excellent material for photonic integrated circuits (PICs), but achieving high-performance laser sources in silicon still poses challenges. The monolithic integration of III-V quantum dot (QD) lasers on silicon i...

    2023-10-26
    See translation