English

Researchers have developed a new type of frequency comb that is expected to further improve the accuracy of timing

1114
2024-03-15 14:02:06
See translation

The chip based device, known as the frequency comb, measures the frequency of light waves with unparalleled accuracy, completely changing timing, detection of exoplanets, and high-speed optical communication.

Now, scientists and collaborators from the National Institute of Standards and Technology in the United States have developed a new method for manufacturing combs, which is expected to improve their already sophisticated accuracy and allow them to measure light in frequency ranges that were previously unattainable. The expanded range will enable the frequency comb to detect cells and other biological materials.

The researchers described their work on Nature Photonics. The team includes Fran ç ois Leo and colleagues from the Free University of Brussels in Belgium, Julien Fatome from the University of Dijon Burgundy in France, and scientists from the Joint Institute of Quantum Research, a research partner at NIST and the University of Maryland.

These new devices are manufactured on small glass chips, and their operation is fundamentally different from previous chip based frequency combs.
The frequency comb acts as a ruler of light. Just like the evenly spaced scale lines on a regular ruler measure the length of an object, the frequency spikes on a micro comb measure the oscillation or frequency of light waves.

Researchers typically use three elements to construct micro combs: a single laser, called a pump laser; A tiny ring resonator, the most important component; And a micro waveguide that transmits light between the two. The laser injected into the waveguide enters the resonator and competes in a loop. By carefully adjusting the frequency of the laser, the light inside the ring can become solitons - a solitary wave pulse that maintains its shape while moving.

Whenever the soliton completes a loop, a portion of the pulse will split and enter the waveguide. Quickly, a whole row of narrow pulses filled the waveguide, with each spike separated at the same fixed interval in time, which is the time required for the soliton to complete one cycle. The peak corresponds to a set of uniformly distributed frequencies and forms the scale lines or "teeth" of the frequency comb.

Although this method of generating micro combs is effective, it can only generate combs within the frequency range centered on the pump laser frequency. To overcome this limitation, NIST researchers Gr é gory Moille and Kartik Srinivasan collaborated with an international research team led by Miro Erkintalo from the University of Auckland in New Zealand and Miro Erkintalo from the Dodd Walls Center for Photonics and Quantum Technology to theoretically predict this new process, and then demonstrated the new process of generating soliton micro combs through experiments.

The new method does not use a single laser, but two pump lasers, each emitting light at different frequencies. The complex interaction between two frequencies produces a soliton with a central frequency located precisely between the two laser colors.

This method allows scientists to generate combs with new characteristics within a frequency range that is no longer limited by the pump laser. For example, by generating combs that span different frequencies from the injection pump laser, these devices can enable scientists to study the composition of biological compounds.

In addition to this practical advantage, the physical foundation of this new micro comb may bring other important advances. An example is the potential improvement in noise associated with a single tooth of a micro comb.

In a comb generated by a single laser, the pump laser only directly carves the center tooth. As a result, the farther the teeth are from the center of the comb, the wider the teeth will be. This is not advisable because wider teeth cannot accurately measure frequency like narrower teeth.
In the new comb system, two pump lasers shape each tooth. According to theory, this should result in a set of teeth that are equally narrow, thereby improving measurement accuracy. Researchers are currently testing whether this theoretical prediction is applicable to the micro combs they manufacture.

The dual laser system provides another potential advantage: it generates two types of solitons, which can be compared to having a positive or negative sign. Whether a specific soliton is negative or positive is entirely random, as it is caused by the quantum properties of the interaction between two lasers.

This may enable solitons to form a perfect random number generator, which plays a crucial role in creating secure encryption codes and solving statistical and quantum problems that would otherwise be impossible for ordinary non quantum computers to solve.

Source: Laser Net

Related Recommendations
  • Laser gyroscopes measure small changes in daytime length on Earth

    Recently, scientists used laser gyroscopes to measure that the change in Earth's rotational speed is less than one millionth. This technology can help scientists understand the complex flow of water and air, which can cause the smallest adjustments to the Earth's rotation.The Earth's rotation is not completely stable. Planets accelerate or slow down as they rotate, slightly shortening or prolongin...

    2023-09-19
    See translation
  • MICRONICS launches its innovative SLS 3D printer product

    3D printing company Micronics announced the launch of its new Micron desktop selective laser sintering (SLS) 3D printer.The company stated that Micron is priced at $2999 and aims to bring industrial grade 3D printing capabilities to desktops for professionals and hobbyists. One of the main features of Micron is its ability to print complex objects without the need for supporting structures. This i...

    2024-06-17
    See translation
  • Due to research conducted by scientists from South Korea and the UK, the power of lasers will increase by one million times

    Due to research conducted by scientists from South Korea and the UK, the power of lasers will be able to increase by one million times. The researchers plan to apply this improvement for scientific purposes.The study was led by representatives of Strathclyde University and the Korea Institute UNIST and GIST. Behind the scenes footage of their work in the journal Nature Photonics. It has been prove...

    2023-11-27
    See translation
  • Coherent lasers will help expand the scale of fusion tokamaks

    Coherent company's excimer lasers can be more widely used in fusion reactor applications, after the US based photonics giant signed a "letter of intent" with Japan's Faraday 1867 Holdings.Faraday 1867, headquartered in Kanagawa Prefecture, is said to have become the world's leading manufacturer of high-temperature superconducting (HTS) tape through its subsidiary Faraday Japan factory.This tape is...

    2023-10-11
    See translation
  • Laser Photonics cleaning technology simplifies the removal of biofilms in industrial environments

    Laser Photonics Corporation is a leading global industrial developer of CleanTech laser systems for laser cleaning and other material applications, highlighting a key application of its CleanTech laser system.Wayne Tupuola, CEO of Laser Photonics, commented, "Our CleanTech laser cleaning system provides an efficient and cost-effective method for removing biofilms from various materials and surface...

    2023-09-20
    See translation