English

Aerotech announces new control features for laser scanning heads

1139
2024-06-04 15:30:09
See translation

Aerotech has upgraded the performance of AGV laser scanning heads through powerful controller functions to enhance scanner control (ESC). The new ESC function of the Automation 1-GL4 2-axis laser scanning head driver is a completely passive control loop enhancement function that ensures higher accuracy in the most dynamic motion.

With the increasing demand for higher output laser technology in various industries, quality standards are also constantly tightening. Therefore, traditional laser scanning systems quickly reached their limits.

Aerotech's 2-axis, 3-axis, and 5-axis laser scanning heads all benefit from this feature, achieving higher acceleration and smaller tracking errors, allowing users to see a significant improvement in laser processing throughput.

"The ESC function improves the performance of all AGV laser scanning head products, eliminating the need for users to change trajectories or motion commands," said Bryan Germann, Optical Manipulation Product Manager at Aerotech. Our customers need to push their scanning head products to faster and more dynamic limits without compromising accuracy. This upgrade can improve productivity as the number of units per hour can increase without compromising quality.

Widespread laser applications have benefited from ESC, including:
Impact laser drilling for electronic and semiconductor applications: ESC provides higher drilling efficiency through strict hole material quality requirements.
Laser cutting and microfabrication of display glass for automotive and mobile applications: Improving cutting speed without sacrificing edge quality means higher yield and stable quality yield.

Laser welding of medical devices: Higher frequency swing motion during welding contour can improve welding quality and minimize post-processing.

Source: Laser Net

Related Recommendations
  • Trumpf confirms a 16% decrease in revenue to 4.3 billion euros for the 2024-2025 fiscal year

    Recently, Trumpf confirmed the relevant data for the fiscal year 2024-2025 and released further news and comments regarding the establishment of a new development partnership with Rohde&Schwarz focusing on military drones.The preliminary figures were first released in July, 2025, when CEO Nicola Leibinger-Kammüller stated that “the lowest point has been reached.” The company generated sales o...

    10-23
    See translation
  • LiDAR solutions provider Cepton acquired by KOITO

    On July 29, 2024, Cepton, a provider of high-performance LiDAR solutions, announced the signing of the final agreement for its acquisition, making it the acquiring company's subsidiary in the United States.Image source: CeptonAccording to the agreement, the acquirer is the internationally renowned automotive lighting giant KOITO, which was established in 1915 and has a history of over a hundred ye...

    2024-08-01
    See translation
  • UK to Build World's Largest Power Laser: Accelerating the Use of Nuclear Fusion and Promising to Obtain Clean Energy

    According to reports, British scientists will build the world's largest power laser. They hope that this £ 85 million (approximately $103 million) device can accelerate the use of nuclear fusion and potentially obtain clean energy, which is inexhaustible.According to the report, the "Vulcan" 20-20 laser will be built in Havel, Oxfordshire, and it will produce a laser brightness that is 24 t...

    2023-10-09
    See translation
  • Chinese researchers enhance perovskite lasers by suppressing energy loss

    Limiting Auger recombination enables “record” quasi-continuous wave laser output.For years, engineers have sought better ways to build tiny, efficient lasers that can be integrated directly onto silicon chips, a key step toward faster, more capable optical communications and computing.Today’s commercial lasers are mostly made from III-V semiconductors grown on specialized substrates—a process that...

    08-25
    See translation
  • Progress has been made in the research of phase modulation of terahertz programmable metasurfaces based on free carrier plasmonic dispersion effect

    Recently, the team of Situ Guohai and Guo Jinying from the Aerospace Laser Technology and Systems Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, and the School of Microelectronics at Shanghai University collaborated to propose a terahertz phase controlled programmable metasurface design scheme based on free carrier plasma dispersion effect. The rela...

    2024-07-26
    See translation