English

Aerotech announces new control features for laser scanning heads

1130
2024-06-04 15:30:09
See translation

Aerotech has upgraded the performance of AGV laser scanning heads through powerful controller functions to enhance scanner control (ESC). The new ESC function of the Automation 1-GL4 2-axis laser scanning head driver is a completely passive control loop enhancement function that ensures higher accuracy in the most dynamic motion.

With the increasing demand for higher output laser technology in various industries, quality standards are also constantly tightening. Therefore, traditional laser scanning systems quickly reached their limits.

Aerotech's 2-axis, 3-axis, and 5-axis laser scanning heads all benefit from this feature, achieving higher acceleration and smaller tracking errors, allowing users to see a significant improvement in laser processing throughput.

"The ESC function improves the performance of all AGV laser scanning head products, eliminating the need for users to change trajectories or motion commands," said Bryan Germann, Optical Manipulation Product Manager at Aerotech. Our customers need to push their scanning head products to faster and more dynamic limits without compromising accuracy. This upgrade can improve productivity as the number of units per hour can increase without compromising quality.

Widespread laser applications have benefited from ESC, including:
Impact laser drilling for electronic and semiconductor applications: ESC provides higher drilling efficiency through strict hole material quality requirements.
Laser cutting and microfabrication of display glass for automotive and mobile applications: Improving cutting speed without sacrificing edge quality means higher yield and stable quality yield.

Laser welding of medical devices: Higher frequency swing motion during welding contour can improve welding quality and minimize post-processing.

Source: Laser Net

Related Recommendations
  • Research progress on the interaction between strong laser and matter Electromagnetic induced transparency effect in plasma physics

    The transmission of electromagnetic waves (such as lasers) in plasma is a fundamental issue in plasma physics. In general, electromagnetic waves cannot be transmitted in high-density plasma, but their transmission and energy transfer play a crucial role in applications such as fast ignition laser fusion, laser particle acceleration, and ultra short and ultra bright radiation sources.In 1996, S. fr...

    2024-03-21
    See translation
  • The influence of laser beam drift on SLM thin-walled TC11 specimens at high scanning speed

    AbstractDue to the width of the laser melt pool and the sintering effect on the surrounding powder, the experimental size of the selective laser melting (SLM) sample will be larger than the design size, which will greatly affect the dimensional accuracy and surface quality of the thin-walled sample. In order to obtain SLM thin-walled TC11 specimens with precise dimensions, an orthogonal experiment...

    02-24
    See translation
  • 2D photoelectric neuron array can achieve broadband and low loss optical nonlinearity accessible to ambient light

    Light can calculate functions during propagation and interaction with structured materials, with fast speed and low energy consumption. The use of all optical neural networks for general computing requires an optical activation layer with nonlinear dependence on the input. However, existing optical nonlinear materials either have slow speeds or very weak nonlinearity at the level of natural light ...

    2024-03-20
    See translation
  • Light Adv. Manuf. | Laser Direct Writing Assists Perovskite Optoelectronic Applications

    IntroductionMetal halide perovskites have excellent optoelectronic properties and have become the undisputed "star" materials in the semiconductor field, attracting great attention from both academia and industry. With a large amount of research investment, the application of perovskite covers various optical and optoelectronic fields such as single photon sources, micro nano lasers, photodetector...

    2024-03-25
    See translation
  • Researchers use desktop laser systems to generate ultrafast electrons

    In a mass particle accelerator, subatomic particles are accelerated to ultrahigh speeds that are comparable to the speed of light towards the target surface. The accelerated collision of subatomic particles produces unique interactions, enabling scientists to gain a deeper understanding of the fundamental properties of matter.Traditionally, laser based particle accelerators require expensive laser...

    2024-03-14
    See translation