English

Laser based deformation may lead to self optimized aircraft wings

127
2024-01-18 16:12:03
See translation

Due to advances in materials science by Stockholm researchers, changing the shape during flight to better handle airflow passing through its aircraft wings may be imminent. The trick involves the melting and drilling capabilities of lasers.

Researchers from KTH Royal Institute of Technology in Stockholm, Sweden conducted experiments on paraffin. Using the 2D version of the material, they were able to use a laser to poke small holes in the wax and slowly melt it to guide the liquid paraffin to the desired position, thanks to the tilting stage. The effect is laser-induced shape changes that occur during several cycles of laser pulses and tilt of the stage.

"In each cycle, everything only moves by a few tens of micrometers," said co-author Wuter van der Wijngaart of the study. It can reshape objects, allowing them to pass through narrow gaps and reassemble them into any target shape. This allows for unrestricted real-time creation of tools and other objects without the need to introduce additional materials.

Although this breakthrough was achieved using 2D materials, researchers suggest that these findings will be translated into 3D materials. They say such breakthroughs may lead to aircraft wings being able to self modify to optimize drag, cars becoming more aerodynamic in flight, and even creating office spaces with on-demand seats.
In this study, the process of material remodeling is called phase change pumping.

"By melting a portion of an object with a hot spot, a liquid region is formed inside the material," the researchers explained in a research report published in the journal Advanced Functional Materials.

They added, "The movement of hot spots inside an object generates a melting front, and the laser heats the material above the melting point and freezes the front, causing heat loss to the surrounding environment and cooling the material below the freezing point." Most materials have a decrease in density during the melting process, and an increase in density during the freezing process, causing the material to flow from the melting front to the liquid region at the freezing front. "

Although the experiments involved in this specific study introduce laser heat into the external environment, researchers suggest that embedding a heat source in the material may lead to more automated shape transformation in practical applications.

Source: Laser Net

Related Recommendations
  • Shanghai Optical Machinery Institute has made progress in high-efficiency optical parametric amplification technology

    Recently, a joint research team composed of Sun Meizhi, associate researcher of the High Power Laser Physics Joint Laboratory of the Chinese Academy of Sciences Shanghai Institute of Optics and Precision Mechanics, and Tu Xiaoniu, associate researcher of the Chinese Academy of Sciences Shanghai Institute of Silicate, proposed a new configuration of cross Fabry Perot intracavity optical parametric ...

    2024-07-11
    See translation
  • Ultra wideband pulse compression grating for single cycle Ava laser implemented by Shanghai Institute of Optics and Mechanics

    Recently, Shao Jianda, a researcher of Shanghai Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Jin Yunxia, a researcher team, and Li Chaoyang, a researcher of Zhangjiang Laboratory, have made breakthroughs in the field of ultra wideband pulse compression gratings.The research team has successfully developed a ultra 400 nm broadband gold grating for single cycle pulse com...

    2023-10-01
    See translation
  • The world's first tunable wavelength blue semiconductor laser

    Recently, researchers from Osaka University in Japan have developed the world's first compact, wavelength tunable blue semiconductor laser in a new study. This breakthrough paves the way for far ultraviolet light technology and brings enormous potential for applications such as virus inactivation and bacterial disinfection. The research results have been published in the journal Applied Physics Le...

    2024-11-23
    See translation
  • Laser printing on fallen leaves can produce sensors for medical and laboratory use

    The manufacturing of sensors through 3D printing combines speed, design freedom, and the possibility of using waste as a substrate. In the circular economy model, various results have been achieved, and typically discarded residues are used as low-cost resources. A research team in Brazil has proposed a highly creative solution that involves printing electrochemical sensors on fallen leaves. The t...

    2024-05-16
    See translation
  • Redefining the Future of Sensing: In depth Study of Novel Plasma Waveguide Structures

    Imagine in such a world, the detection of trace substances is not only fast, but also incredibly accurate, indicating a new era of technological progress in health, safety, and environmental monitoring. Due to pioneering research on plasma waveguide structures, this vision is becoming increasingly realistic, aimed at enhancing refractive index sensing and spectral filtering. This innovative method...

    2024-03-04
    See translation