English

Germany Developed Short Wave Green Laser Underwater Cutting Technology

89
2023-09-18 15:22:48
See translation

With the prominent energy issues in various countries around the world, the utilization and development of energy have become a hot topic, and the demand for renewable energy is constantly increasing. The existing underwater infrastructure is no longer sufficient and needs to be dismantled using appropriate modern technology. For example, in order to increase the power of offshore wind power plants, it is necessary to first dismantle the old steel frame structure that is currently below sea level and rebuild more advanced equipment.

Researchers at the Fraunhofer Institute of Materials and Beam Technology (IWS) have developed a shortwave green laser cutting method for seabed cutting, which has multiple advantages compared to commonly used technologies such as saws, automatic wire saws, and plasma cutting machines.

Researchers have stated that a short wave green laser with a power exceeding kilowatt level is a necessary condition for this technology to achieve cutting. In the future, shorter wavelength blue lasers can also be used to achieve this.

Short wave green laser cuts steel under seabed conditions. Source: Fraunhofer IWS

Since its inception, laser cutting technology has made significant progress and has been widely used in the manufacturing industry. However, infrared or other longwave lasers are usually used for cutting in dry environments, assisting in coaxial gas and beam cutting to remove molten metal generated during the cutting process. However, in the marine environment, the degree of absorption, reflection, and scattering of light of different wavelengths by seawater varies, and most lasers are dissipated after a short distance. Auxiliary gases also require complex pipeline systems.

Using green lasers with shorter wavelengths than most industrial lasers to penetrate seawater does not result in significant loss, reducing power loss. Therefore, this type of laser is also more suitable for marine environments. While existing green lasers operate in water, water can discharge the resulting melt from the incision under pressure. This abundant medium in the ocean can replace the cutting gas required in dry environments, thereby eliminating the need for natural gas pipelines.

In addition, gases and gas mixtures (such as air) used in laser cutting applications in dry environments need to be pre compressed, but water does not need to be compressed. Therefore, using seawater as the cutting medium, this technology can conveniently remove melt residues at the interface.

Patrick Herwig, project leader of the Fraunhofer IWS laser cutting team, stated that this method can also be applied to small underwater robots with laser accessories. Because underwater robots can operate underwater in complex environments with high risk, pollution, and even zero visibility, achieving more efficient cutting operations than existing automatic sawing and cutting machines.

On the other hand, laser underwater cutting technology is also more environmentally friendly. The dismantling team does not need to load new blades or other consumables onto the cutting laser, and this system does not generate waste or release hazardous substances into the atmosphere. This performance advantage is particularly important when dismantling old nuclear power plants. If gas is used as the cutting medium, radioactive waste is likely to be expelled from the water surface with bubbles.

At present, the technology is still in the laboratory testing stage. Next, researchers hope to develop the validation scale of the laboratory into a practical application system.

This article is compiled by Optoelectronics based on the content of photonics

Related Recommendations
  • Tokyo Institute of Technology collaborates with EX Fusion to promote laser fusion energy closer to commercialization

    Recently, Tokyo Institute of Technology and EX Fusion established a collaborative research group focused on promoting liquid metal equipment to achieve commercial laser fusion reactors. The two sides held an official signing ceremony in Tokyo on October 11th, marking the official start of their cooperation.The EX Fusion Liquid Metals Collaborative Research Group was established with the support of...

    2023-10-17
    See translation
  • Goethe, University of Central Florida research team showcases light and thin achromatic diffractive liquid crystal optical systems

    Headdisplay devices such as Apple Vision Pro, Meta Quest, and PICO are expected to completely change the way we perceive and interact with various digital information. By providing more direct interaction with digital information, MR has become one of the key driving forces for the metaverse, spatial computing, and digital twins, and has begun to be widely applied in fields such as intelligent tou...

    2023-09-26
    See translation
  • Lumiotive Launches New LiDAR Sensor LM10

    Recently, optical semiconductor developer Lumiotive, headquartered in Seattle, USA, launched a new LiDAR sensor LM10, which is its first fully produced product of light controlled metasurface (LCM) technology designed for digital beam steering.The developers stated that compared to mechanical systems, their digital beam steering method overcomes the limitations of traditional LiDAR sensors in term...

    2023-09-02
    See translation
  • Fujitsu collaborates to research and develop multi band wavelength fiber optic transmission technology

    Recently, Fujitsu and KDDI research company have successfully developed a high-capacity multi band wavelength multiplexing transmission technology using installed optical fibers.The new technology of the two companies can transmit wavelengths beyond the C-band by using batch wavelength conversion and multi band amplification technology.Expanding transmission capacity in remote areasTwo companies h...

    2023-12-05
    See translation
  • TAU Systems upgrades the University of Texas desktop laser to a peak power of 40 terawatts

    TAU Systems, a manufacturer of ultra fast compact laser plasma accelerators, announced today that it has successfully upgraded the existing desktop terawatt laser (UT 3) at the University of Texas to a new and improved performance that provides power for compact particle accelerators. The upgraded UT 3 driver laser can now generate ultra short pulses with a peak power of 40 terawatts.This upgrade ...

    2023-08-21
    See translation