English

New Meltio robot unit provides large-scale line laser DED

1114
2023-09-22 14:53:13
See translation

Meltio is an expert in the field of cost-effective linear laser metal deposition additive manufacturing technology (directed energy deposition, DED) and has launched the new Meltio Robot Cell, a turnkey metal additive manufacturing solution equipped with industrial robotic arms and the recently launched slicing software Meltio Space.

The new hardware aligns with the vision of this Spanish company to provide reliable solutions, reduce costs, and improve manufacturing processes for industries around the world. This new system allows for standard metal 3D printing, part repair, or feature addition starting from the factory's construction board.

The Meltio robot unit is compatible with open hardware platforms, allowing Meltio to integrate metal 3D heads into any brand of robotic arm. In this case, the company offers Meltio Robot Cell as a fully integrated solution to provide a faster, better, and standardized user experience.

The volume and working area defined in the workspace of the Meltio robot unit can meet all manufacturing needs using industrial grade additive manufacturing technology to fully utilize Meltio's metal 3D printing heads. With its monitoring and safety functions, it is able to independently manufacture parts in industrial environments. The robot and locator are installed together with the Meltio Engine, Meltio Space, and accessories on a self-supporting platform and laser safe housing.

The Meltio robot unit is designed as a plug and play system with a single power supply and a single inert gas supply. The environmental conditions are standard, and the battery cannot be located outdoors or protected from sunlight and dust. It must be in a controlled environment. This solution enables customers to receive products that can be used for robot metal 3D printing.
This machine has been certified and tested to operate as standard with ABB robotic arms, targeting all industries. It is the evolution of Meltio engine robot integration, serving as the basic production model that enables various industries to integrate 3D printed parts manufacturing with Meltio heads integrated into robots into their production systems.

As the product manager of Meltio Engine, Alejandro Nieto is excited about this new innovation: "Meltio's main commitment to launching the Meltio Robot Cell is to provide the ability to manage the entire manufacturing process using our metal 3D printing technology for all types of industries, which includes the integration of the Meltio head into the robotic arm and in a safe environment for producing parts.

This new hardware system enables customers to obtain ready-made units for robotic metal 3D printing, eliminating integration processes and longer assembly delivery times. The Meltio robot unit has a specific area for each type of supply required by the unit every day, which is sufficient to start manufacturing by simply connecting to an inert gas and power supply.

Meltio Robot Cell also provides work agreements for industrial clients. Compared to the existing products in the market today, the price of Meltio Robot Cell is highly competitive, with a factory price of less than $300000. Compared to thermoplastic and concrete 3D printing systems in other industries that require 3D printed structural components, the cost of this solution is also competitive.

This unit may be delivered together with other robot brands in the market to better respond to customers in terms of availability and technical capabilities. Meltio Robot Cell is compatible with open hardware platforms, allowing Meltio to integrate our metal 3D printing heads into any brand of robotic arm

Source: Laser Network

Related Recommendations
  • A new type of flexible reflective mirror can improve the performance of X-ray microscopy

    A research team in Japan has designed a flexible and shapable X-ray reflector, achieving significant accuracy and higher stability at the atomic level.This new technology, developed by Satoshi Matsuyama and Takato Inoue from the Graduate School of Engineering at Nagoya University, in collaboration with the Japanese Institute of Physical and Chemical Research and JTEC Corporation, improves the perf...

    2024-05-06
    See translation
  • Progress in the research and development of high-performance electrically pumped topology lasers in semiconductor manufacturing

    Topological laser (TL) is an ideal light source for future new optoelectronic integrated chips, designed and manufactured using topological optics principles to obtain robust single-mode lasers. Electrically pumped topology lasers have become a research hotspot due to their small size and ease of integration, but topology lasers based on electrical injection are still in the early stages of resear...

    2024-07-11
    See translation
  • RTX Raytheon Company will develop ultra wide bandgap semiconductors for ultraviolet lasers

    The UWBGS program will develop and optimize ultra wide bandgap materials and manufacturing processes for the next revolution in the semiconductor electronics field.US military researchers need to develop new integrated circuit substrates, device layers, junctions, and low resistance electrical contacts for the new generation of ultra wide bandgap semiconductors. They found a solution from RTX comp...

    2024-09-30
    See translation
  • Scientists demonstrate a new optical neural network training method that can crush electronic microprocessors

    The current deep neural network system (such as ChatGPT) can quickly improve energy efficiency by 100 times in training, and "future improvements will greatly increase by several orders of magnitude. Scientists from MIT and other institutions have demonstrated a new optical neural network training method that can crush state-of-the-art electronic microprocessors.Moreover, the computational density...

    2023-09-27
    See translation
  • The latest progress in laser chip manufacturing

    Modern computer chips can construct nanoscale structures. So far, only these tiny structures can be formed on top of silicon chips, but now a new technology can create nanoscale structures in a layer beneath the surface. The inventor of this method stated that it has broad application prospects in the fields of photonics and electronics, and one day, people can manufacture 3D structures on the ent...

    2024-07-29
    See translation