English

Allocate 10 billion US dollars! New York State to Build NA Extreme UV Lithography Center

961
2023-12-15 13:57:53
See translation

On December 11th local time, New York State announced a partnership with companies such as IBM, Micron, Applied Materials, and Tokyo Electronics to jointly invest $10 billion to expand the Albany NanoTech Complex in New York State, ultimately transforming it into a high numerical aperture extreme ultraviolet (NA EUV) lithography center to support the development of the world's most complex and powerful semiconductors.

This new factory, covering an area of 50000 square feet, will begin construction in 2024. A $10 billion investment is expected to help build North America's first and only publicly owned high numerical aperture extreme ultraviolet (NA EUV) lithography center.

It is reported that the new factory is expected to further expand in the future, which will encourage growth in future partners and support new initiatives such as the National Semiconductor Technology Center, the National Advanced Packaging and Manufacturing Program, and the Department of Defense's Microelectronics Sharing Program.

High numerical aperture extreme ultraviolet (NA EUV) lithography technology is the key to the manufacturing of next-generation (2nm and below) cutting-edge process chips. The collaboration between New York State and major semiconductor companies in the United States and Japan to establish the High-NA EUV semiconductor research and development center is mainly aimed at helping local American manufacturers further enhance their design and manufacturing capabilities in the field of cutting-edge semiconductor processes. They hope to obtain financial support through the Chip Act. State government officials have also provided incentives for these manufacturing facilities.

The statement shows that NY Create, a non-profit organization responsible for coordinating the construction of the facility, is expected to use $1 billion in state government funds to purchase TWINSCAN EXE: 5200 lithography equipment from ASML. Once the device is installed, relevant partners will be able to start researching the next generation of chip manufacturing. The plan will create 700 jobs and bring in at least $9 billion in private investment.

According to the plan, NY CREATES will purchase and install high numerical aperture extreme ultraviolet (NA EUV) lithography tools designed and manufactured by ASML. The instrument is equipped with a technology in which the path in the laser etching circuit exceeds the ultraviolet spectrum on a micro scale. Ten years ago, this process was the first to etch channels for 7-nanometer and 5-nanometer chip processes, and currently has the potential to develop and produce chips with nodes smaller than 2 nanometers - as early as 2021, IBM overcame this obstacle.

The EUV machines currently used in the market and industry are unable to generate the resolution required for sub 2nm nodes, in order to facilitate large-scale production and make them into chips. According to IBM, although current machines can provide the necessary level of accuracy, they require three to four EUV light exposures instead of one exposure. The increase in high NA can create larger optical devices and support printing higher resolution patterns on wafers.

Although researchers need to consider the issue of shallower focusing depth caused by increased aperture, IBM and its partners believe that this technology can drive the adoption of more efficient chips in the near future.
In terms of talent, the plan also includes collaborating with State University of New York to support and build talent development channels.

Source: OFweek

Related Recommendations
  • Ultra fast plasma for all optical switches and pulse lasers

    Plasmology plays a crucial role in advancing nanophotonics, as plasma structures exhibit a wide range of physical properties that benefit from local and enhanced light matter interactions. These characteristics are utilized in many applications, such as surface enhanced Raman scattering spectroscopy, sensors, and nanolasers.In addition to these applications, the ultrafast optical response of plasm...

    2024-03-26
    See translation
  • The Stanford University team has manufactured the first practical chip grade titanium sapphire laser

    According to a report in Nature on June 26th, a team from Stanford University in the United States has developed a titanium sapphire laser on a chip. Whether in terms of scale efficiency or cost, this achievement is a huge progress. Image source: Nature websiteTitanium sapphire lasers are indispensable in many fields such as cutting-edge quantum optics, spectroscopy, and neuroscience, but they ...

    2024-07-01
    See translation
  • Chip based comb laser illumination and unlocking of new applications

    Researchers have shown that dissipative Kerr solitons (DKS) can be used to create chip based optical frequency combs with sufficient output power for optical atomic clocks and other practical applications. This progress may lead to chip based instruments being able to perform precise measurements that were previously only possible in a few specialized laboratories.Gr é gory Moille from the ...

    2023-08-30
    See translation
  • 20 million dollars! Undersea fiber optic agreement reached, fully operational by 2026

    Recently, Confluence Networks LLC has announced a long-term partnership agreement with Laser Light Communications Inc., a developer and provider of software controlled optical network services.According to the agreement, Laser Light will adopt Confluence-1 submarine fiber optic network, which Confluence Networks is about to launch, as the core part of its global network. The protocol will last for...

    2024-05-24
    See translation
  • AMCM 8 laser M 8K metal 3D printing equipment is about to be launched, equipped with 8 lasers

    In October 2023, Germany's AMCM (EOS, a global technology leader in industrial grade additive manufacturing) announced the upcoming launch of the M 8K metal 3D printing equipment. The device will be equipped with 8 lasers, with a construction volume of 800 x 800 x 1200 millimeters, nearly four times the size of AMCM's previously launched M 4K metal 3D printing device on the market.ArianeGroup's ho...

    2023-10-19
    See translation