English

Optical Drive Magnetic Control: A Breakthrough in Memory Technology

1218
2024-01-06 14:21:21
See translation

A recent study conducted by the Hebrew University suggests an undiscovered relationship between magnetism and light. This discovery may pave the way for extremely fast optical storage technology and creative optical magnetic sensor technology.

It is expected that this discovery will completely change the way equipment is manufactured and data is stored in a range of fields.

Amir Capua, Professor and Head of the Spintronics Laboratory at the Institute of Applied Physics and Electrical Engineering at the Hebrew University of Jerusalem, reported on significant developments in the field of optomagnetic interactions. The team's surprising discovery demonstrated the process of manipulating solid magnetic states using optical laser beams, providing practical significance for a range of industries.

The discovery of neglected photomagnetic components, which are often overlooked due to the slower reaction of magnets compared to light radiation, contradicts recognized knowledge. The team's research has revealed a new theory: the ability of rapidly oscillating light wave magnetic components to manipulate magnets redefines fundamental physical interactions.

It is interesting that people have found a simple mathematical relationship between the amplitude, frequency, and energy absorption of magnetic materials to characterize the strength of interactions.

This discovery combines concepts from two scientific disciplines that previously had little in common and were closely related to the field of quantum technology. We arrived at this understanding by using principles that have been established in the quantum computing and quantum optics communities, but are less important in the spintronics and magnetism communities.

When magnetic materials and radiation are in a perfect equilibrium state, their interaction is recognized. However, so far, the situation involving radiation and imbalanced magnetic materials has only been described very briefly.

The fundamental principles of quantum computing and quantum optics were discovered in this non-equilibrium field. Using the concepts of quantum physics, we studied this non-equilibrium state in magnetic materials and demonstrated evidence of the fundamental idea that magnets can react to light at a short time scale. In addition, this kind of communication has been proven to be very meaningful and effective.

In addition, the group has also developed a unique sensor that can combine this discovery to identify the magnetic composition of light. Compared to traditional sensors, this innovative design provides adaptability and integration for a wide range of applications, which may alter sensor and circuit design to achieve different uses for light.

Mr. Benjamin Assouline, a doctoral student at the Spintronics Laboratory, conducted this study, which is crucial for this discovery. Recognizing the potential significance of their findings, the team has submitted multiple related patent applications.

The study was funded by the Israel Science Foundation, the Peter Broyd Center for Innovation Engineering and Computer Science, and the Center for Nanoscience and Nanotechnology at the Hebrew University of Jerusalem.

Source: Laser Net

Related Recommendations
  • Xinjiang Institute of Physical and Chemical Technology has established the largest database of computational nonlinear optical crystal materials to date

    Modern laser technology urgently requires nonlinear optical materials that can generate coherent light through second harmonic generation. However, only a small portion of the nonlinear optical properties of non centrosymmetric crystal materials have been experimentally or theoretically studied, and exploration for high-performance nonlinear optical crystal materials is still very limited.Recentl...

    2023-10-24
    See translation
  • Oxford University Tokamak Energy Company develops laser technology for fusion power plants

    Tokamak Energy is currently developing a new laser measurement technology for controlling extreme conditions inside fusion power plants.The laser based dispersion interferometer system is being tested at the company's headquarters in Oxford and will be installed on its world record breaking fusion machine ST40 later this year.Clean, safe, and renewable nuclear fusion power generation occurs inside...

    2024-03-14
    See translation
  • Light Adv. Manuf. | Laser Direct Writing Assists Perovskite Optoelectronic Applications

    IntroductionMetal halide perovskites have excellent optoelectronic properties and have become the undisputed "star" materials in the semiconductor field, attracting great attention from both academia and industry. With a large amount of research investment, the application of perovskite covers various optical and optoelectronic fields such as single photon sources, micro nano lasers, photodetector...

    2024-03-25
    See translation
  • The world's first 40000 watt groove laser cutting machine is put into production in China

    On the morning of August 26th, the world's first large-scale 40000 watt groove laser cutting machine production ceremony was successfully held at Shandong Century Zhenghua Metal Technology Co., Ltd. located in Zhoucun District, adding another boost to the rapid development of Zhoucun's stainless steel industry chain.Source:博览新闻

    2023-08-28
    See translation
  • Synchrotron X-ray imaging technology

    According to a recent study published in the journal Science Advances, it reveals how early mammals grew and developed during critical periods of their long 'life history'. A research team including Queen Mary University of London used synchrotron X-ray tomography technology to image the growth rings in fossilized tooth roots, in order to infer the lifespan, growth rate, and even sexual maturity t...

    2024-08-15
    See translation