English

The Japanese team uses laser technology for ice core sampling to accurately study climate change

1227
2023-09-23 10:20:57
See translation

Recently, a research team from the Astronomical Glaciology Laboratory under the RIKEN Nishina Center (RNC) of the Japanese Institute of Physics and Chemistry announced that they have developed a new laser based sampling system for studying the composition of glacier ice cores.


The above image shows the discrete holes sampled 150mm from the shallow ice core of the Fuji Ice Dome in Japan (Southeast Antarctica)
(Image source: RIKEN)


The depth resolution of the new system is 3 millimeters, three times lower than the currently available resolution, which means it can detect temperature changes that occurred in a shorter period of time in the past.

The new laser melting sampler (LMS) is expected to help reconstruct continuous annual temperature changes thousands to hundreds of thousands of years ago, which will help scientists understand past and present climate change. This study was published in the Journal of Glaciology on September 19, 2023.

Draw a climate history map
Tree rings can tell us the age of trees, and the color and width of the rings reveal information about the local climate in those years. The annual growth of glaciers can also tell us this information, but it often takes much longer. The team of scientists led by Yuko Motizuki also hopes that they can study past climate change by analyzing cylindrical ice cores extracted from glaciers.

By regularly sampling along the core, researchers can reconstruct a continuous temperature distribution. However, for samples collected from depths, this is impossible because the annual accumulation there is usually compressed to sub centimeters.

Currently, scientists typically use two standard ice core sampling methods. One method yields a depth accuracy of approximately 10 millimeters, which means that data accumulated for years less than 10 millimeters will be lost, and any significant climate change event will be missed. Another method has good depth accuracy, but it destroys some of the samples required for analyzing water content, which is the main method used by scientists to calculate past temperatures.

The new laser melting sampler overcomes these two problems: it has high depth accuracy and does not damage the key oxygen and hydrogen isotopes found in water, which are necessary for inferring past temperatures.

From: Ofweek





Related Recommendations
  • Scientists use glass to create femtosecond lasers

    Image source: Federal Institute of Technology in Lausanne, SwitzerlandScience and Technology Daily, Beijing, September 27th (Reporter Zhang Jiaxin) Commercial femtosecond lasers are manufactured by placing optical components and their mounting bases on a substrate, which requires strict alignment of optical components. So, is it possible to manufacture femtosecond lasers entirely from glas...

    2023-09-28
    See translation
  • Meltio launches a new blue laser 3D printer M600

    Recently, metal 3D printing manufacturer Meltio launched its latest metal 3D printer - M600. This M600 has shown significant progress in integrating into industrial manufacturing processes, no longer limited to niche applications. Like most of Meltio's product lines, the design of M600 was originally intended to address common manufacturing issues such as long delivery times, high inventory cost...

    2024-07-06
    See translation
  • Progress in Research on Transparent Ceramics for 3D Printing Laser Illumination at Shanghai Institute of Optics and Mechanics

    It is reported that the Research Center for Infrared Optical Materials of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made progress in the research of additive manufacturing (3D printing) transparent ceramics for laser illumination.Recently, the Research Center for Infrared Optical Materials of the Shanghai Institute of Optics and Precision Mechanics, Chines...

    2023-10-17
    See translation
  • The estimated output value of the LiDAR market in 2029 is expected to reach 5.352 billion US dollars

    Market research firm TrendForce Consulting released an industry insight report today, stating that currently LiDAR is mainly used in the automotive market for passenger cars and unmanned taxis, while in the industrial market it supports applications such as robotics, factory automation, and logistics.The report points out that driven by Level 3 and more advanced auto drive system system and logist...

    01-22
    See translation
  • Researchers improve laser behavior by tying laser knots

    Researchers have created a new type of laser that, despite environmental noise and manufacturing defects, still performs as expected. Technically speaking, researchers have created a topology, time, and mode-locked laser. This study has the potential to improve sensors and computing hardware.A mode-locked laser emits light with regular pulses instead of a continuous beam. Pulses can be very counta...

    2024-03-07
    See translation