English

Osram has received over 300 million euros in German investment to develop next-generation optoelectronic semiconductor technology

991
2023-09-25 16:02:52
See translation

Recently, ams Osram, a developer of smart sensors and transmitters, announced that it expects to receive over 300 million euros in funding from the German Federal Government and the Free State of Bavaria over the next five years.

This funding is aimed at promoting Osram's development of the next generation optoelectronic semiconductor technology in Regensburg, Germany. The IPCEI funding in this batch of plans (an "important project of common interest in Europe") will support the company's independent investment, research, and development of innovative optoelectronic components there.

(Image source: ams Osram)

In its recent announcement, Osram stated that it is "working to strengthen its development and manufacturing base in Regensburg for future investments". On September 18th, at a related event of the Federal Ministry of Economic Affairs and Climate Action in Germany, the company introduced its project initiated within the scope of IPCEI microelectronics and communication technology.

For the planned public funding, the German Federal Ministry of Economic Affairs and Climate Action emphasizes the significant importance of the project within Europe and supports cooperation with the Bavarian Ministry of Economic Affairs, Regional Development, and Energy for related investments. The statement stated: "300 million euros will mainly be invested in research and development activities for innovative optoelectronic semiconductors and their manufacturing processes, thereby creating 400 new high-tech jobs.

In addition, Osram will also invest in new clean rooms and laboratory facilities for research, development, and experimental production. These facilities will be used for applications such as UV-C LEDs for disinfection, near-infrared emitters for autonomous LiDAR, and applications in the context of Industry 4.0.

Another special focus will be on microLEDs for new types of displays. Osram pointed out that "automation and artificial intelligence play an important role in Regensburg, enabling us to open up Xintiandi in production facilities." The first 8-inch wafer production pilot assembly line is currently under construction, in order to launch cost-effective mass production of highly innovative microLEDs in the near future.

Aldo Kamper, CEO of Osram, said, "By expanding our development activities in the field of optoelectronic semiconductors, we can create space for innovation and accelerate the time to market of our products. At the same time, our investment is a clear commitment to Regensburg as an industrial center, Bavaria as a high-tech base, and Europe as a breeding ground for innovation.

He added, "In Regensburg, we create new, energy-efficient products and production processes to drive digitization, thereby supporting European green agreements and European autonomy in the semiconductor industry. Under our future oriented 'Rebuild the Base' plan, we will continue to establish our market leading core competitiveness and shape the future of the semiconductor market from this Bavarian city.

Hubert Aiwanger, Minister of Economic Affairs of Bavaria, said, "Osram represents the high-tech manufacturing in Regensburg. As the Bavarian government, we are interested in participating in the financing of the IPCEI project. This is fully in line with our intention to further expand Bavaria as a top international base in the semiconductor industry. Every euro has received good investment and will create new job opportunities in a highly innovative environment.

Source: Ofweek

Related Recommendations
  • TRUMPF plans to upgrade laser technology with quantum computing

    Recently, multiple research institutions in Germany, including the high-tech company TRUMPF, the Fraunhofer Institute for Laser Technology (ILT), and the Durham Center for Complex Quantum Systems at the Physics Department of the Free University of Berlin, are using quantum algorithms to explore the fundamental principles of laser physics. Its long-term goal is to significantly accelerate the devel...

    7 hours ago
    See translation
  • Redefining optical limits: Engineers discover enhanced nonlinear optical properties in 2D materials

    Recently, according to a paper published in Nature Communications titled "Phonoenhanced nonlinearities in hexagonal boron nitride," engineers from Columbia University collaborated with theoretical experts from the Max Planck Institute of Material Structure and Dynamics to discover that pairing lasers with lattice vibrations can improve the nonlinear optical properties of layered two-dimensional ma...

    2024-02-23
    See translation
  • Scientists have developed a solar cell that can bend and soak in water

    Researchers and their partners at the RIEKN Creative Physical Science Research Center have created a flexible and waterproof organic photovoltaic film. This innovative thin film can integrate solar cells into clothing, maintaining functionality even in rainwater or washing cycles.One of the potential uses of organic photovoltaic technology is to manufacture wearable electronic devices that can be ...

    2024-05-08
    See translation
  • STL's new 160 micron fiber optic can meet emerging network and pipeline capacity requirements

    STL unveiled its new 160 micron fiber optic for the first time at the 2023 India Mobile Conference Trade Show.The company claims that its 160 micron fiber optic was conceptualized and developed at its Center of Excellence in Maharashtra, India, and its cable capacity is three times that of traditional 250 micron fiber optic. STL Company.After the launch of 160 micron fiber at the 2023 India Mobile...

    2023-11-01
    See translation
  • Analysis of Optically Pumped Semiconductor Laser Technology for Promoting the Development of Life Sciences

    Optically Pumped Semiconductor Lasers technology has achieved great success in the market due to its various unique advantages, with over 100000 OPSL devices currently operating in the market. This article introduces the application and new developments of OPSL in the fields of flow cytometry and DNA sequencing.OPSL has the characteristics of flexible wavelength extension, adjustable power, compac...

    2024-02-01
    See translation