English

Kearns Launches 3-Axis Controlled UV Laser Marking Machine to the UK Market

775
2023-10-09 13:59:36
See translation

Recently, Keyence announced that it has delivered the MD-U series of 3-axis controlled UV laser marking machines to its UK customers. This product technology utilizes ultraviolet lasers with high absorption rates to perform cold labeling on various materials - a process that can be carried out under minimum thermal stress.

UV laser is generated by passing a standard wavelength laser (1064nm) through a nonlinear crystal and then reducing the wavelength size to (355nm) through third harmonic generation (THG) through another crystal.

As the demand for more complex products and diverse materials increases, Keinz has developed triaxial lasers to meet the demand for higher quality and more stable results. The company stated that lasers can achieve high contrast and uniform labeling on materials that were previously difficult to label. These operations can be performed at 330 × On an area of 330 millimeters, while reducing costs and simplifying the processing process.

This 3-axis UV laser marking machine can be used to generate high contrast markings on various materials, such as plastic, glass, and other thermosensitive materials. The marking head of the MD-U includes an embedded multifunctional camera that can automatically focus on a part, check the quality of the marking, and read the 2D code. By tracking unintentional deviations in target height or tilt, it is possible to prevent marking defects throughout the entire marking area.

Kearns also stated that its maximum operating speed in standard areas is 12000 mm/s, with built-in proprietary digital scanners and different quality adjustment levels, making the laser work faster than traditional models. At the same time, pattern selection software can customize and edit materials.

Kearns has developed the aforementioned laser using its proprietary sealing method, ensuring that its components have environmentally friendly performance and are not affected by factors such as dirt, dust, and water droplets.

In fact, three-axis laser technology has potential applications in various industries, including the automotive industry - it can help develop plastic parts, cationic painted parts, and smaller parts. In the electronics industry, it can help manufacture LED lights, wafers, and more. In addition, it will be able to assist the medical industry in developing tablets, bottles, and instruments, as well as manufacturing shells for some products in the food/cosmetics industry.

Source: OFweek

Related Recommendations
  • Targeting military laser technology! Two major enterprises plan to establish a joint venture company

    Latest news: Rheinmetall and European Missile Group Germany plan to establish a joint venture to develop shipborne laser weapons.The cooperation between the two companies in the field of military laser technology has been ongoing for several years. In 2022 and 2023, under the framework of the High Energy Marine Laser Demonstration Working Group (ARGE), the jointly developed laser was successfully ...

    01-15
    See translation
  • Alliance unit Radiant High Tech Blue Purple Laser Assists in Ocean Exploration

    The ocean covers over 71% of the Earth's surface, and so far humans have only explored about 5% of the ocean. This means that there are still 95% of the depths of the ocean that we know nothing about, making it the most mysterious and unknown place on our planet.600 years ago, Zheng He led a fleet to play the prelude to the era of great navigation, laying the foundation for us to understand the wo...

    2023-11-06
    See translation
  • Researchers at the Technion-Israel Institute of Technology have developed coherently controlled spin optical lasers based on single atomic layers

    Researchers at the Technion-Israel Institute of Technology have developed a coherently controlled spin optical laser based on a single atomic layer.This discovery was made possible by coherent spin-dependent interactions between a single atomic layer and a laterally constrained photonic spin lattice, which supports a high-Q spin valley through Rashaba-type spin splitting of photons of bound states...

    2023-09-12
    See translation
  • Tiny yet Powerful: How Lasers on Chips Change the Game Rules of Photonics

    Chip level ultrafast mode-locked laser based on nanophotonic lithium niobate.Researchers have created a compact mode-locked laser integrated into a nanophotonic platform, capable of generating high-power and ultrafast optical pulses. The breakthrough in miniaturization of MLL technology can significantly expand the application of photonics.Innovation in mode-locked laser technologyTo improve the t...

    2023-12-27
    See translation
  • Successful First Satellite Earth Laser High Speed Image Transmission Experiment

    Recently, the reporter learned from Changguang Satellite Technology Co., Ltd. (hereinafter referred to as "Changguang Satellite") that the company used a self-developed vehicle mounted laser communication ground station to conduct satellite ground laser high-speed image transmission experiments with the onboard laser communication terminal of the "Jilin No.1" constellation MF02A04 satellite and ac...

    2023-10-14
    See translation