English

Observation of nanoscale behavior of light driven polymers using combination microscopy technology

987
2024-03-12 14:02:46
See translation

Expanding our scientific understanding often boils down to observing what is happening as closely as possible. Now, researchers from Japan have observed the nanoscale behavior of azo polymer films and triggered them with lasers.

In a study published in Nano Express last month, researchers at Osaka University used a combination of cutting-edge scanning high-speed atomic force microscopy and optical microscopy to create films as polymer films changed.

Azo polymers are photoactive materials, which means they undergo changes when light shines on them. Specifically, light can alter their chemical structure, thereby altering the surface of thin films. This makes them very interested in applications such as optical data storage and providing light triggered motion.

The ability to use focused laser to initiate these changes during image capture is called in situ measurement.
"Usually, changes in polymer films are studied by processing them, such as by irradiating them with light and then measuring or observing them. However, the information provided is limited," explained Keishi Yang, the main author of the study. "The use of HS-AFM devices, including inverted optical microscopes with lasers, allows us to trigger changes in azo polymer films while observing them in real-time with high spatiotemporal resolution."

HS-AFM measurement can track the dynamic changes on the surface of polymer films in movies at a speed of two frames per second. It was also found that the direction of polarized light used has an impact on the final surface pattern.

Further research using in-situ methods is expected to thoroughly understand the mechanism of photo driven azo polymer deformation, thereby maximizing the potential of these materials.

"We have demonstrated our technique for observing polymer membrane deformation," said Takayuki Umakoshi, senior author of the study. However, in doing so, we have demonstrated the potential to combine cutting-edge scanning HS-AFM with laser sources for materials science and physical chemistry.

Materials and processes that respond to light are important in a wide range of fields in chemistry and biology, including sensing, imaging, and nanomedicine. In situ technology provides an opportunity to deepen understanding and maximize potential, and therefore has the potential to be applied to various optical devices.

Source: Laser Net

Related Recommendations
  • AWOL Vision will showcase cutting-edge laser projectors and award-winning innovations at CEDIA 2023

    AWOL Vision has announced that it will be showcasing the latest innovations in home entertainment at this year's CEDIA Expo in Denver, Colorado from September 7-9.At the show, AWOL Vision will debut the new LVV-3000 Pro and LVV-3500 Pro laser projectors with Dolby Vision and Control4 integration, and will showcase the latest Vanish TV, The TV recently received the prestigious "IFA 2023 Best of the...

    2023-09-08
    See translation
  • Xi'an Institute of Optics and Fine Mechanics: New progress in large field two-photon scattering microscopy imaging technology

    Adaptive optics is a technique that improves imaging quality by correcting wavefront distortion. Interference focus sensing (IFS), as a new method proposed in the field of adaptive optics in recent years, has been proven to have significant effects in correcting complex aberrations in deep tissue imaging. This technology is based on measuring a single location within the sample to determine the ca...

    04-15
    See translation
  • Researchers have captured the strange behavior of laser induced gold

    A new study conducted by the US Department of Energy's SLAC National Accelerator Laboratory has revealed the strange behavior of gold when impacted by high-energy laser pulses.When certain materials are subjected to strong laser excitation, they will quickly disintegrate. But gold is exactly the opposite: it becomes more resilient and resilient. This is because the way gold atoms vibrate together ...

    2024-02-17
    See translation
  • Overview of Inconel 939 Alloy Parts Developed by Additive Manufacturing Process

    The related paper was published in Heliyon under the title "A systematic review of Inconel 939 alloy parts development via additive manufacturing process".IN939 is a modern nickel based high-temperature alloy that can work continuously at high temperatures due to its excellent fatigue resistance, creep resistance, and corrosion resistance. The unique performance of IN939 is related to the composit...

    2024-12-10
    See translation
  • NUBURU will enter a new stage of diversified development

    Recently, NUBURU, a global developer of high-power and high brightness industrial blue light laser technology, announced the signing of a strategic commitment letter, officially launching a deep layout in the field of national defense and security. This transformation plan covers capital restructuring, technology mergers and acquisitions, and management team upgrades, marking a new stage of divers...

    02-26
    See translation