English

The University of Rochester has received nearly $18 million to build the world's highest power laser system

898
2023-09-28 17:28:50
See translation

After receiving a $14.9 million contract from the US Department of Defense (DOD) last month to study the pulse laser effect, the University of Rochester recently received nearly $18 million in funding from the National Science Foundation (NSF) for the key technology design and prototype of the EP-OPAL, also known as the OMEGA EP coupled optical parametric amplifier line (OPAL).

EP-OPAL is a new facility dedicated to studying the interaction between ultra-high intensity lasers and matter. The University of Rochester pointed out that the facility can be built in the Laboratory for Laser Energy (LLE) after completing the design project.

The use of high-intensity lasers has made scientific work possible in fields ranging from plasma science to particle acceleration, laboratory astrophysics to laser driven nuclear physics. Nowadays, these jobs have also brought countless scientific, medical, commercial, and industrial applications.

The National Science Foundation (NSF) of the United States has provided funding to the University of Rochester and collaborating institutions for the design and production of prototypes for key technologies. The joint main researchers for this project include Jonathan Zuegel and Antonio Di Piazza from the University of Rochester, Eva Zurek from the University of Buffalo, Franklin Dollar from the University of California, Irvine, and Ani Apahamian from the University of Notre Dame in Australia.

The OMEGA laser facility at the Laser Energy Laboratory (LLE) of the University of Rochester currently has two major laser devices, Omega and Omega EP, available for use by researchers from around the world. According to the design plan, EP-OPAL will next add two of the world's most powerful lasers and utilize the capabilities of high-energy OMEGA EP lasers. Its design will be guided by the most urgent scientific issues that can be solved using this laser system in four cutting-edge research fields, namely:

- Particle Acceleration and Advanced Light Sources (PAALS)
-High Field Physics and Quantum Electrodynamics (HFP/QED)
-Astrophysics and Laboratory Planetary Physics (LAPP)
-Laser Driven Nuclear Physics (LDNP)

According to Jonathan Zuegel, the chief researcher of LLE, a successful EP-OPAL design will make it possible for the world's highest power laser system. He described: "Its two laser beams are combined to emit a laser pulse with a peak power close to the total power incident by the sun on the Earth's surface, but focused on an area smaller than the cross-sectional area of human hair

The main purpose of this project is to:
-Design EP OPAL facilities (including lasers, experimental systems, and diagnostics) to address a range of eye-catching scientific issues
-The shooting cycle time of the designed and prototype high-energy laser amplifier is a few minutes
- Design and prototype large-scale optical production and characterization systems

 

The EP-OPAL facility is envisioned as a learning environment and a hub for various scientific networks, providing opportunities for basic research, innovation, and social benefits. This project utilizes the professional knowledge, resources, and talents of collaborating institutions, including the University of California Buffalo, Irvine University, Notre Dame University of Maryland, University of Michigan, Ohio State University, and Plymouth Grating Laboratory. This funding is part of the National Science Foundation's Mid Scale Research Infrastructure 1 program.

Last month, the Laser Energy Laboratory at the University of Rochester signed a $14.9 million contract with the Ministry of Defense to study the effects of pulsed lasers. According to the university, this funding is approximately twice the annual funding received from the Ministry of Defense in recent years. In addition to supporting the scientific tasks of the Laser Energy Laboratory at the University of Rochester, this funding will help promote technology and talent development to support the widespread use of laser based directed energy systems.

The Laser Energy Laboratory at the University of Rochester was established in 1970 and is currently the largest university research center funded by the United States Department of Energy (DOE). As a nationally funded research facility, LLE has been conducting a series of scientific experiments and has received widespread international praise for its significant contributions to the US Department of Energy's inertial confinement fusion and high-energy density physics projects. In September last year, the Laser Energy Laboratory at the University of Rochester began a large-scale expansion project, which cost a total of $42 million and will build a new office and laboratory building with a total area of 66000 square feet. It will be directly connected to LLE's current laboratory in Brighton, New York, and is expected to be officially completed in 2024.

Reprinted from:ofweek

Related Recommendations
  • High Resolution Visible Light Imaging of Large Aperture Telescopes

    The deformable mirror used in adaptive optics can instantly correct the static wavefront aberrations and atmospheric turbulence wavefront disturbances of the optical system by changing its surface. This enables the optical system to automatically adapt to changes in the environment and maintain optimal performance. It is widely used in high-resolution astronomical observations, laser atmospheric t...

    2023-10-31
    See translation
  • Innovating Photonics: Lithium Tantalate Provides Power for the Next Generation of Optoelectronic Circuits

    The new photonic integrated circuit technology based on lithium tantalate has improved cost efficiency and scalability, making significant progress in the fields of optical communication and computing.The rapid development of photonic integrated circuits (PICs) has revolutionized optical communication and computing systems, combining multiple optical devices and functions on a single chip.For deca...

    2024-05-14
    See translation
  • Researchers use machine learning to optimize high-power laser experiments

    High intensity and high repetition lasers rapidly and continuously emit powerful bursts of light, capable of emitting multiple times per second. Commercial fusion energy factories and advanced compact radiation sources are common examples of systems that rely on such laser systems. However, humans are a major limiting factor as their response time is insufficient to manage such rapid shooting syst...

    2024-05-24
    See translation
  • New technology from Swedish universities enables real-time laser beam forming and control

    Dr. Yongcui Mi from Western University in Sweden has developed a new technology that enables real-time laser beam shaping and control for laser welding and directional energy deposition using laser and metal wire. This innovative technology draws on the mirror technology used in advanced astronomical telescopes.Adaptive beam shaping using deformable mirror technology (Image source: Western Univer...

    2024-12-19
    See translation
  • Scientists build high-power cladding-pumped Raman fiber laser in 1.2 μm band

    Laser sources operating in the 1.2 μm band have some unique applications in photodynamic therapy, biomedical diagnostics, and oxygen sensing. In addition, they can be used as pump sources for mid-infrared optical parameter generation and visible light generation through frequency doubling.Laser generation in the 1.2 μm band has been achieved by different solid-state lasers, including semicon...

    2024-01-31
    See translation