English

The University of Rochester has received nearly $18 million to build the world's highest power laser system

961
2023-09-28 17:28:50
See translation

After receiving a $14.9 million contract from the US Department of Defense (DOD) last month to study the pulse laser effect, the University of Rochester recently received nearly $18 million in funding from the National Science Foundation (NSF) for the key technology design and prototype of the EP-OPAL, also known as the OMEGA EP coupled optical parametric amplifier line (OPAL).

EP-OPAL is a new facility dedicated to studying the interaction between ultra-high intensity lasers and matter. The University of Rochester pointed out that the facility can be built in the Laboratory for Laser Energy (LLE) after completing the design project.

The use of high-intensity lasers has made scientific work possible in fields ranging from plasma science to particle acceleration, laboratory astrophysics to laser driven nuclear physics. Nowadays, these jobs have also brought countless scientific, medical, commercial, and industrial applications.

The National Science Foundation (NSF) of the United States has provided funding to the University of Rochester and collaborating institutions for the design and production of prototypes for key technologies. The joint main researchers for this project include Jonathan Zuegel and Antonio Di Piazza from the University of Rochester, Eva Zurek from the University of Buffalo, Franklin Dollar from the University of California, Irvine, and Ani Apahamian from the University of Notre Dame in Australia.

The OMEGA laser facility at the Laser Energy Laboratory (LLE) of the University of Rochester currently has two major laser devices, Omega and Omega EP, available for use by researchers from around the world. According to the design plan, EP-OPAL will next add two of the world's most powerful lasers and utilize the capabilities of high-energy OMEGA EP lasers. Its design will be guided by the most urgent scientific issues that can be solved using this laser system in four cutting-edge research fields, namely:

- Particle Acceleration and Advanced Light Sources (PAALS)
-High Field Physics and Quantum Electrodynamics (HFP/QED)
-Astrophysics and Laboratory Planetary Physics (LAPP)
-Laser Driven Nuclear Physics (LDNP)

According to Jonathan Zuegel, the chief researcher of LLE, a successful EP-OPAL design will make it possible for the world's highest power laser system. He described: "Its two laser beams are combined to emit a laser pulse with a peak power close to the total power incident by the sun on the Earth's surface, but focused on an area smaller than the cross-sectional area of human hair

The main purpose of this project is to:
-Design EP OPAL facilities (including lasers, experimental systems, and diagnostics) to address a range of eye-catching scientific issues
-The shooting cycle time of the designed and prototype high-energy laser amplifier is a few minutes
- Design and prototype large-scale optical production and characterization systems

 

The EP-OPAL facility is envisioned as a learning environment and a hub for various scientific networks, providing opportunities for basic research, innovation, and social benefits. This project utilizes the professional knowledge, resources, and talents of collaborating institutions, including the University of California Buffalo, Irvine University, Notre Dame University of Maryland, University of Michigan, Ohio State University, and Plymouth Grating Laboratory. This funding is part of the National Science Foundation's Mid Scale Research Infrastructure 1 program.

Last month, the Laser Energy Laboratory at the University of Rochester signed a $14.9 million contract with the Ministry of Defense to study the effects of pulsed lasers. According to the university, this funding is approximately twice the annual funding received from the Ministry of Defense in recent years. In addition to supporting the scientific tasks of the Laser Energy Laboratory at the University of Rochester, this funding will help promote technology and talent development to support the widespread use of laser based directed energy systems.

The Laser Energy Laboratory at the University of Rochester was established in 1970 and is currently the largest university research center funded by the United States Department of Energy (DOE). As a nationally funded research facility, LLE has been conducting a series of scientific experiments and has received widespread international praise for its significant contributions to the US Department of Energy's inertial confinement fusion and high-energy density physics projects. In September last year, the Laser Energy Laboratory at the University of Rochester began a large-scale expansion project, which cost a total of $42 million and will build a new office and laboratory building with a total area of 66000 square feet. It will be directly connected to LLE's current laboratory in Brighton, New York, and is expected to be officially completed in 2024.

Reprinted from:ofweek

Related Recommendations
  • Photon chips help drones fly unobstructed in weak signal areas

    With funding from the National Science Foundation of the United States, researchers at the University of Rochester are developing photonic chips that use quantum technology called "weak value amplification" to replace mechanical gyroscopes used in drones, enabling them to fly in areas where GPS signals are obstructed or unavailable.Using this quantum technology, scientists aim to provide the same ...

    2023-10-28
    See translation
  • The wide application of TORNOS mind machine in diversified industrial fields

    TORNOS walking machine, also known as walking CNC lathe or spindle box mobile CNC automatic lathe, occupies an important position in the field of precision manufacturing due to its excellent performance and wide application areas. This machine tool not only integrates mechanical and electrical technologies, but also becomes an indispensable processing equipment in many industrial fields due to its...

    2024-07-24
    See translation
  • The technological iteration route of automotive millimeter wave radar chips

    The rapid development of intelligent cars and autonomous driving technology has made millimeter wave radar inconspicuous, and the widespread application of millimeter wave radar has driven the technological evolution of MMIC.From the expensive gallium arsenide (GaAs) process in the early days to the mainstream CMOS and SiGe processes today, and then to the future promising FD-SOI process, the cont...

    2024-12-07
    See translation
  • 85000W laser cutting machine emerged and led the world

    Recently, Pentium Laser and Shenzhen Chuangxin Laser launched the world's first 85000W laser cutting machine, once again breaking the record for the highest power in the cutting field.Zhang Qingmao, Director of the Laser Processing Committee of the Chinese Optical Society, Xu Xia, rotating CEO of Pentium Group, Cai Liang, Director of the Final Inspection Department of Pentium Laser Manufactu...

    2023-09-16
    See translation
  • The Science Island team has made new progress in detecting atmospheric formaldehyde

    Recently, Zhang Weijun, a research team of the Anguang Institute of the Chinese Academy of Sciences, Hefei Academy of Materials, made new progress in atmospheric formaldehyde detection, and the related achievements were published on the international TOP journal Sensors and Actors: B. Chemical under the title of "Portable highly sensitive laser absorption spectrum formaldehyde sensor based on comp...

    2023-09-21
    See translation