English

The University of Rochester has received nearly $18 million to build the world's highest power laser system

51
2023-09-28 17:28:50
See translation

After receiving a $14.9 million contract from the US Department of Defense (DOD) last month to study the pulse laser effect, the University of Rochester recently received nearly $18 million in funding from the National Science Foundation (NSF) for the key technology design and prototype of the EP-OPAL, also known as the OMEGA EP coupled optical parametric amplifier line (OPAL).

EP-OPAL is a new facility dedicated to studying the interaction between ultra-high intensity lasers and matter. The University of Rochester pointed out that the facility can be built in the Laboratory for Laser Energy (LLE) after completing the design project.

The use of high-intensity lasers has made scientific work possible in fields ranging from plasma science to particle acceleration, laboratory astrophysics to laser driven nuclear physics. Nowadays, these jobs have also brought countless scientific, medical, commercial, and industrial applications.

The National Science Foundation (NSF) of the United States has provided funding to the University of Rochester and collaborating institutions for the design and production of prototypes for key technologies. The joint main researchers for this project include Jonathan Zuegel and Antonio Di Piazza from the University of Rochester, Eva Zurek from the University of Buffalo, Franklin Dollar from the University of California, Irvine, and Ani Apahamian from the University of Notre Dame in Australia.

The OMEGA laser facility at the Laser Energy Laboratory (LLE) of the University of Rochester currently has two major laser devices, Omega and Omega EP, available for use by researchers from around the world. According to the design plan, EP-OPAL will next add two of the world's most powerful lasers and utilize the capabilities of high-energy OMEGA EP lasers. Its design will be guided by the most urgent scientific issues that can be solved using this laser system in four cutting-edge research fields, namely:

- Particle Acceleration and Advanced Light Sources (PAALS)
-High Field Physics and Quantum Electrodynamics (HFP/QED)
-Astrophysics and Laboratory Planetary Physics (LAPP)
-Laser Driven Nuclear Physics (LDNP)

According to Jonathan Zuegel, the chief researcher of LLE, a successful EP-OPAL design will make it possible for the world's highest power laser system. He described: "Its two laser beams are combined to emit a laser pulse with a peak power close to the total power incident by the sun on the Earth's surface, but focused on an area smaller than the cross-sectional area of human hair

The main purpose of this project is to:
-Design EP OPAL facilities (including lasers, experimental systems, and diagnostics) to address a range of eye-catching scientific issues
-The shooting cycle time of the designed and prototype high-energy laser amplifier is a few minutes
- Design and prototype large-scale optical production and characterization systems

 

The EP-OPAL facility is envisioned as a learning environment and a hub for various scientific networks, providing opportunities for basic research, innovation, and social benefits. This project utilizes the professional knowledge, resources, and talents of collaborating institutions, including the University of California Buffalo, Irvine University, Notre Dame University of Maryland, University of Michigan, Ohio State University, and Plymouth Grating Laboratory. This funding is part of the National Science Foundation's Mid Scale Research Infrastructure 1 program.

Last month, the Laser Energy Laboratory at the University of Rochester signed a $14.9 million contract with the Ministry of Defense to study the effects of pulsed lasers. According to the university, this funding is approximately twice the annual funding received from the Ministry of Defense in recent years. In addition to supporting the scientific tasks of the Laser Energy Laboratory at the University of Rochester, this funding will help promote technology and talent development to support the widespread use of laser based directed energy systems.

The Laser Energy Laboratory at the University of Rochester was established in 1970 and is currently the largest university research center funded by the United States Department of Energy (DOE). As a nationally funded research facility, LLE has been conducting a series of scientific experiments and has received widespread international praise for its significant contributions to the US Department of Energy's inertial confinement fusion and high-energy density physics projects. In September last year, the Laser Energy Laboratory at the University of Rochester began a large-scale expansion project, which cost a total of $42 million and will build a new office and laboratory building with a total area of 66000 square feet. It will be directly connected to LLE's current laboratory in Brighton, New York, and is expected to be officially completed in 2024.

Reprinted from:ofweek

Related Recommendations
  • German Jenoptik receives over 17 million euros in automation business orders

    Recently, Jenoptik, a leading German company in the field of optoelectronics, announced that the group successfully won multiple automation solution orders worth over 17 million euros in the second quarter of 2024.It is revealed that these orders originated from a first tier OEM supplier (unnamed) and were delivered by Prodomax, an automation expert under the group.As a member of the Yina Group (a...

    2024-06-18
    See translation
  • The world's first tunable wavelength blue semiconductor laser

    Recently, researchers from Osaka University in Japan have developed the world's first compact, wavelength tunable blue semiconductor laser in a new study. This breakthrough paves the way for far ultraviolet light technology and brings enormous potential for applications such as virus inactivation and bacterial disinfection. The research results have been published in the journal Applied Physics Le...

    2024-11-23
    See translation
  • Laser Photonics officially launches its SaberTech laser cutting system

    Recently, Laser Photonics (LPC) officially launched its SaberTech laser cutting system. This system not only enriches the product line of LPC's laser cleaning, welding, marking, and engraving systems, but also marks another important breakthrough for the company in the field of laser technology. This product release is another heavyweight measure after LPC's latest generation laser cleaning system...

    2024-06-19
    See translation
  • Technology Frontiers | What is the Next Generation Laser?

    Since the 1960s, lasers have brought revolutionary changes to the world and have now become an indispensable tool in modern applications, from cutting-edge surgical procedures and precision manufacturing to fiber optic data transmission. However, with the increasing demand for laser applications, challenges have also arisen. For example, the market for fiber lasers is constantly expanding, mainly ...

    2024-06-21
    See translation
  • The research team describes laser direct writing of single-photon optical fiber integrated multimode storage on a communication band chip

    Figure: Experimental setup.Quantum memory that relies on quantum band integration is a key component in developing quantum networks that are compatible with fiber optic communication infrastructure. Quantum engineers and information technology experts have yet to create such a high-capacity network that can form integrated multimode photonic quantum memories in communication frequency ban...

    2023-08-04
    See translation