English

The LANL laboratory in the United States uses quantum light emitters to generate single photon light sources

106
2023-09-01 14:00:44
See translation

Recently, the Los Alamos National Laboratory (LANL) in the United States has developed a method for quantum light emitters, which stacks two different atomic thin materials together to achieve a light source that generates circularly polarized single photon streams. These light sources can also be used for various quantum information and communication applications.

According to Han Htoon, a researcher at Los Alamos, this work shows that single-layer semiconductors can emit circularly polarized light without the need for an external magnetic field.

Previously, this effect could only be achieved through the high magnetic field generated by bulky superconducting magnets, coupling quantum emitters to very complex nanoscale photonic structures, or injecting spin polarized charge carriers into quantum emitters. Our proximity effect method has the advantages of low manufacturing cost and high reliability.

Polarization is a means of encoding photons, therefore this achievement is an important step in the direction of quantum cryptography or quantum communication. With a light source that generates a single photon stream and introduces polarization, we basically merge the two devices into one.

The research team stacked a single molecule thick layer of tungsten selenide semiconductor onto a thicker layer of nickel phosphorus trisulfide magnetic semiconductor. Using atomic force microscopy, the research team created a series of nanoscale indentations on thin layer materials.

When the laser is focused on the material pile, the 400 nanometer diameter indentation generated by the atomic microscope tool has two effects. Firstly, the indentation forms a "well" or "depression" in the potential energy landscape. The electrons of the tungsten selenide monolayer fall into the depression. This stimulates the emission of a single photon from the well.

Nanoindentation also disrupts the typical magnetic properties of the underlying nickel phosphorus trisulfide crystal, generating local magnetic moments pointing outward from the material. This magnetic moment circularly polarizes the emitted photons. In order to experimentally confirm this mechanism, the team first collaborated with the pulse field facility of the Los Alamos National High Magnetic Field Laboratory to conduct high magnetic field spectroscopy experiments. Then, the team collaborated with the University of Basel in Switzerland to measure the tiny magnetic field of the local magnetic moment.

The team is currently exploring methods to adjust the degree of circular polarization of single photons through electronic or microwave stimulation. This capability will provide a method for encoding quantum information into photon streams. Further coupling between photon flow and waveguide will provide photon circuits, allowing photons to propagate in one direction. This circuit will become a fundamental component of the ultra secure quantum internet.

Source: OFweek

Related Recommendations
  • Alcon acquires ophthalmic laser equipment company for $466 million

    On July 3rd local time, Swiss ophthalmic care giant Alcon announced the acquisition of Israeli medical technology company Belkin Vision and its laser equipment assets for treating glaucoma.The transaction includes a prepayment of $81 million, of which approximately $65 million is in cash. In addition, if Alcon can establish this technology as the preferred first-line treatment option for clinical ...

    2024-07-09
    See translation
  • Shanghai Optics and Fine Mechanics Institute has made progress in the new holographic imaging technology of frequency domain direct sampling

    Recently, a research team from the Aerospace Laser Technology and Systems Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a new holographic imaging technology using frequency domain direct sampling. The relevant results were published in Optics Letters under the title of "Fourier inspired single pixel holography".Digital holography is a tech...

    03-20
    See translation
  • SEMA 2023: Huali's Easy Level Floating Free Laser Fuel Level Transmitter

    Winning the SEMA Best Engineering New Product Award is not an easy task. Therefore, it said a lot about Huali's new non floating fuel transmitter bringing hardware home. The Easy Level fuel level sender is a brand new design that does not rely on traditional float arm settings, but uses a frikken laser beam to measure the fuel level in the tank.More precisely, Easy Level uses LiDAR technology to m...

    2023-11-03
    See translation
  • LiDAR solutions provider Cepton acquired by KOITO

    On July 29, 2024, Cepton, a provider of high-performance LiDAR solutions, announced the signing of the final agreement for its acquisition, making it the acquiring company's subsidiary in the United States.Image source: CeptonAccording to the agreement, the acquirer is the internationally renowned automotive lighting giant KOITO, which was established in 1915 and has a history of over a hundred ye...

    2024-08-01
    See translation
  • Internationalization Strategy Enters Stage 2.0 | HSG Hsglaser Thailand Manufacturing Base Holds Grand Opening

    At 9:00 am local time on June 26th, the opening ceremony of Hsglaser Thailand Manufacturing Base was grandly held in Bangkok Industrial Park, Thailand. This not only marks a significant expansion of Hsglaser's global strategic map, but also signifies that its international layout has officially entered a new 2.0 stage, and is another important milestone for Hsglaser to showcase its outstanding str...

    2024-06-27
    See translation