English

UK to Build World's Largest Power Laser: Accelerating the Use of Nuclear Fusion and Promising to Obtain Clean Energy

1157
2023-10-09 14:39:31
See translation

According to reports, British scientists will build the world's largest power laser. They hope that this £ 85 million (approximately $103 million) device can accelerate the use of nuclear fusion and potentially obtain clean energy, which is inexhaustible.


According to the report, the "Vulcan" 20-20 laser will be built in Havel, Oxfordshire, and it will produce a laser brightness that is 24 times the brightness of the strongest sunlight.

A single laser pulse will generate power equivalent to the power generated by the entire British National Power Company, but it lasts less than 1 trillion millionths of a second and only focuses on a target with a diameter of a few micrometers. This laser is expected to be completed by 2029 and will be used to test methods for generating energy through nuclear fusion. Generating energy through nuclear fusion is a dream goal for physicists.

Scientists at other facilities, mainly the Lawrence Livermore National Laboratory in California, USA, are already using high-power lasers to fuse hydrogen atoms together. This can generate helium and energy, reflecting the reactions occurring inside the sun. The latest research results from Lawrence Livermore National Laboratory suggest that the energy obtained from this process may exceed the energy invested in it. However, in order to be commercially viable, the efficiency of this process must be greatly improved.

According to reports, the "Vulcan" 20-20 laser will be used to study basic physics, especially for researchers to explore the so-called "shock ignition".

Generally speaking, a fuel particle the size of a pepper - composed of two hydrogen isotopes, deuterium and tritium - is placed in a plastic capsule. The laser beam transforms the capsule into a plasma, causing it to rapidly expand. This causes fuel particles to be crushed to 30 times their original size in one billionth of a second. The pressure reaches 6 times the internal pressure of the sun. If everything goes smoothly, the fuel will "ignite" at a temperature of around 100 million degrees Celsius, triggering a controllable and energy generating fusion reaction.

Physicists will use the "Vulcan" 20-20 laser to observe different parts of this process. The aim is to test some ideas that may be used in the future to build experimental power stations, said Robbie Scott, a plasma physicist at the UK Council for Science and Technology Equipment.

According to the report, one challenge is to study how to use a series of laser beams to evenly crush a fuel particle from all directions simultaneously. In a full-scale power plant, this achievement may take up to 10 times a second to achieve.

The "Vulcan" 20-20 laser will also be used in "laboratory astrophysics", allowing scientists to simulate conditions in phenomena such as supernovae. A supernova is a violent explosion experienced by certain stars towards the end of their evolution.

It may also be used to convert light into matter. This can be achieved by colliding photons, creating electron and positron pairs. These matter and antimatter particles are believed to have been generated around neutron stars in distant space, but we have almost no idea how they formed.

Alex Robinson, also from the UK Council on Science and Technology Equipment, said, "If you could use a high-power laser beam to create these electron and positron pairs, you might be able to understand how this happened. In fact, there is no other scientific device that can make you do this.

According to reports, the "Vulcan" 20-20 laser will be built at the UK Science and Technology Equipment Council Center Laser Facility, which is part of the Rutherford Appleton Laboratory. The first phase of the project has just begun. The UK government supported research funding agency, the UK Research and Innovation Agency, provided £ 85 million for the central laser device.

The "Huoshen" 20-20 laser will produce a main laser line with a power of 20 petawatts, and in addition, 8 high-energy laser lines will be produced. This will make it the world's largest power laser.

Professor Mark Thomson from the UK Council for Science and Technology Equipment said: 'The Vulcan 20-20 project will put the central laser device at the forefront of high-power laser science and make new experiments in key areas such as renewable energy research possible.'

Source: Laser Manufacturing Network

Related Recommendations
  • Jenoptik announces record high preliminary performance for 2024

    Recently, Jenoptik, a German company, released its preliminary performance for 2024, delivering a record high in both revenue and profit, but also revealing hidden concerns amidst industry cyclical fluctuations. Against the backdrop of weak demand in the semiconductor equipment market and increasing global economic uncertainty, this company with laser and optical technology as its core is attempti...

    02-14
    See translation
  • Electron beam welding process for thick steel plate of turbine at Aachen Institute of Technology in Germany

    Researchers from the Welding Research Institute of Aachen University of Technology in Germany reported on the development of a stable welding process for electron beam welding of thick plates used in the construction of offshore wind turbines. The relevant research results were published in Materials Science and Engineering Technology under the title "Development of a robust welding process for el...

    2024-07-09
    See translation
  • New, low-cost, and high-efficiency photonic integrated circuits

    The rapid development of photonic integrated circuits (PICs) has combined multiple optical devices and functions on a single chip, completely changing optical communication and computing systems.For decades, silicon-based PICs have dominated the field due to their cost-effectiveness and integration with existing semiconductor manufacturing technologies, despite their limitations in electro-optic ...

    2024-05-10
    See translation
  • The global laser technology market is expected to reach 29.5 billion US dollars by 2029

    Recently, Markets And Markets released a five-year assessment report on the global laser industry. According to the report, the global laser technology market is expected to reach $20 billion by 2024 and is projected to reach $29.5 billion by 2029, with a compound annual growth rate of 8.0% during the forecast period.Global Laser Technology Market ForecastThe reasons for market growth include: the...

    2024-07-25
    See translation
  • NASA Completely Transforms Laser Communication and Space Weather Research

    NASA is a pioneer in space research, once again attracting the attention of the world with fascinating insights. In a recent press release, NASA announced plans to test revolutionary laser communication systems and study the interaction between Earth and space weather.A Great Leap in Space Communication: ILLUMA-TThe SpaceX 29 mission, scheduled for November 5th, will conduct research and technical...

    2023-10-23
    See translation