English

UK to Build World's Largest Power Laser: Accelerating the Use of Nuclear Fusion and Promising to Obtain Clean Energy

1111
2023-10-09 14:39:31
See translation

According to reports, British scientists will build the world's largest power laser. They hope that this £ 85 million (approximately $103 million) device can accelerate the use of nuclear fusion and potentially obtain clean energy, which is inexhaustible.


According to the report, the "Vulcan" 20-20 laser will be built in Havel, Oxfordshire, and it will produce a laser brightness that is 24 times the brightness of the strongest sunlight.

A single laser pulse will generate power equivalent to the power generated by the entire British National Power Company, but it lasts less than 1 trillion millionths of a second and only focuses on a target with a diameter of a few micrometers. This laser is expected to be completed by 2029 and will be used to test methods for generating energy through nuclear fusion. Generating energy through nuclear fusion is a dream goal for physicists.

Scientists at other facilities, mainly the Lawrence Livermore National Laboratory in California, USA, are already using high-power lasers to fuse hydrogen atoms together. This can generate helium and energy, reflecting the reactions occurring inside the sun. The latest research results from Lawrence Livermore National Laboratory suggest that the energy obtained from this process may exceed the energy invested in it. However, in order to be commercially viable, the efficiency of this process must be greatly improved.

According to reports, the "Vulcan" 20-20 laser will be used to study basic physics, especially for researchers to explore the so-called "shock ignition".

Generally speaking, a fuel particle the size of a pepper - composed of two hydrogen isotopes, deuterium and tritium - is placed in a plastic capsule. The laser beam transforms the capsule into a plasma, causing it to rapidly expand. This causes fuel particles to be crushed to 30 times their original size in one billionth of a second. The pressure reaches 6 times the internal pressure of the sun. If everything goes smoothly, the fuel will "ignite" at a temperature of around 100 million degrees Celsius, triggering a controllable and energy generating fusion reaction.

Physicists will use the "Vulcan" 20-20 laser to observe different parts of this process. The aim is to test some ideas that may be used in the future to build experimental power stations, said Robbie Scott, a plasma physicist at the UK Council for Science and Technology Equipment.

According to the report, one challenge is to study how to use a series of laser beams to evenly crush a fuel particle from all directions simultaneously. In a full-scale power plant, this achievement may take up to 10 times a second to achieve.

The "Vulcan" 20-20 laser will also be used in "laboratory astrophysics", allowing scientists to simulate conditions in phenomena such as supernovae. A supernova is a violent explosion experienced by certain stars towards the end of their evolution.

It may also be used to convert light into matter. This can be achieved by colliding photons, creating electron and positron pairs. These matter and antimatter particles are believed to have been generated around neutron stars in distant space, but we have almost no idea how they formed.

Alex Robinson, also from the UK Council on Science and Technology Equipment, said, "If you could use a high-power laser beam to create these electron and positron pairs, you might be able to understand how this happened. In fact, there is no other scientific device that can make you do this.

According to reports, the "Vulcan" 20-20 laser will be built at the UK Science and Technology Equipment Council Center Laser Facility, which is part of the Rutherford Appleton Laboratory. The first phase of the project has just begun. The UK government supported research funding agency, the UK Research and Innovation Agency, provided £ 85 million for the central laser device.

The "Huoshen" 20-20 laser will produce a main laser line with a power of 20 petawatts, and in addition, 8 high-energy laser lines will be produced. This will make it the world's largest power laser.

Professor Mark Thomson from the UK Council for Science and Technology Equipment said: 'The Vulcan 20-20 project will put the central laser device at the forefront of high-power laser science and make new experiments in key areas such as renewable energy research possible.'

Source: Laser Manufacturing Network

Related Recommendations
  • The NIRPS alliance is driven by laser frequency comb technology to advance research on exoplanets

    The Near Infrared Red Planet Search Alliance, jointly managed by the Department of Astronomy at the University of Geneva and the University of Montreal, has received cutting-edge advances in CSEM laser frequency comb technology.The laser frequency comb is a precise and stable light source designed to help the NIRPS alliance unravel the mysteries of distant planets, including the possibility of sea...

    2023-12-13
    See translation
  • The world's smallest blue light laser

    Russian scientists have successfully developed the world's smallest blue nanolaser, with a volume of only 0.005 cubic micrometers, breaking through the diffraction limit theory that the size of the light source must not be smaller than its wavelength. This breakthrough has opened up a new technological path for the development of cutting-edge fields such as ultra high definition displays, quantum ...

    11-19
    See translation
  • Electron beam welding process for thick steel plate of turbine at Aachen Institute of Technology in Germany

    Researchers from the Welding Research Institute of Aachen University of Technology in Germany reported on the development of a stable welding process for electron beam welding of thick plates used in the construction of offshore wind turbines. The relevant research results were published in Materials Science and Engineering Technology under the title "Development of a robust welding process for el...

    2024-07-09
    See translation
  • The Japanese team uses laser technology for ice core sampling to accurately study climate change

    Recently, a research team from the Astronomical Glaciology Laboratory under the RIKEN Nishina Center (RNC) of the Japanese Institute of Physics and Chemistry announced that they have developed a new laser based sampling system for studying the composition of glacier ice cores.The above image shows the discrete holes sampled 150mm from the shallow ice core of the Fuji Ice Dome in Japan (Southeast ...

    2023-09-23
    See translation
  • Researchers develop new techniques for controlling individual qubits using lasers

    Researchers at the University of Waterloo's Institute for Quantum Computing (IQC) have developed a new technique that uses lasers to control individual qubits made from the chemical element barium. The breakthrough is a key step toward realizing the capabilities of quantum computers.The new technique uses thin glass waveguides to segment and focus laser beams with unprecedented precision. Each foc...

    2023-09-12
    See translation