English

Shanghai Optical and Mechanical Institute has made progress in ultra-low threshold Rydberg state single mode polariton lasers based on symmetric engineering

988
2023-10-12 14:42:45
See translation

Recently, the research team of Dong Hongxing and Zhang Long from the Research Center of Infrared Optical Materials of the Chinese Academy of Sciences Shanghai Institute of Optics and Precision Mechanics, in cooperation with Huazhong University of Science and Technology, reported a new mechanism for generating dynamically tunable single-mode lasers from exciton polaritons with ultra-low thresholds, The relevant research results are published in Nano Letters under the title "Rydberg State Single Mode Polarion Lasing with Ultralow Threshold via Symmetry Engineering".

The implementation of single mode nano lasers with high energy efficiency and tunable bandwidth is crucial for numerous technological applications such as all optical information processing, optical encryption, super-resolution biomedical imaging, and miniaturized intelligent display. The current strategies for obtaining single-mode lasers still have limitations.

In addition, the current control methods for emission wavelength are essentially static, and new mechanisms that can generate dynamically tunable single-mode lasers are urgently needed to be explored. Exciton polarized polaritons have both photon and exciton properties and have received widespread attention in recent years. Compared with traditional lasers, polarized polariton lasers do not require population inversion and can achieve mode tuning through quantized exciton polarized polariton states, making them an ideal platform for studying dynamically tuned ultra-low threshold lasers.

Researchers have reported the implementation of tunable single mode polarized polariton lasers from highly excited Rydberg states through symmetry engineering. By breaking the symmetry of polariton wave functions through potential traps and controlling the spatial overlap between gain regions and intrinsic modes, reversible and dynamic single mode polariton lasers can be generated from quantized polariton states. By increasing the asymmetry of the potential well, single mode lasers can be achieved even in highly excited states with a main quantum number of N=14.

In addition, due to the excellent overlap of reservoir intrinsic modes and effective spatial constraints, the laser threshold can be reduced by 6 orders of magnitude compared to traditional lasers. The mechanism elucidated by the research results does not depend on any specific material and is applicable to various polarization polariton systems, opening up a new path for the development of dynamically tunable threshold free polarization polariton lasers.

This work has been supported by projects such as the National Natural Science Foundation of China and the Shanghai Youth Top Talent Program.

Figure 1 (a) Schematic diagram of quantized polarized polariton states in a symmetric well; (b) The simulated PL spectrum corresponds to the experimental configuration shown in a; (c) Quantized polarized polariton states in asymmetric wells; (d) The simulated PL spectrum corresponds to the experimental configuration shown in c; (e) SEM images of typical ZnO microrods; (f) 1.27 radius μ Angle resolved PL images of typical ZnO microrods with m. (g) Spatial resolved PL images of polaritons confined in traps.

Figure 2 (a-d) shows the pump position dependence of spatially resolved PL images in a symmetric well. Given in each image Δ X represents the displacement of the excited laser spot from the center of the trap; (e) The spectra corresponding to the images shown in a-d; The pump position dependence of spatially resolved PL images in asymmetric wells (f-i). Δ X represents the displacement between the pumping laser spot and the opposite end face of the ground state polarization wavelet function. Pumping power: 1.25 Pth; (j) The spectra corresponding to the images shown in f-1.

Figure 3 (a-d) selectively pumped spatially resolved PL images of highly asymmetric wells at N=2, 3, 7, and 14 excited states, with a pumping power of 1.35 Pth; (e) The spatially resolved PL images of highly asymmetric wells were selectively pumped at N=2, 3, 7, and 14 excited states, with a pumping power of 1.35 Pth.

Source: OFweek

Related Recommendations
  • Swiitol Launches E24 Pro: A Breakthrough in Laser Engraving Technology

    In order to completely change the world of laser engraving, Swiitol has launched the E24 Pro, a 24W integrated laser engraving machine with cutting-edge features and functions. The Swiitol E24 Pro showcases an innovative integrated structure laser engraving machine made of durable aluminum alloy. It is worth noting that the device can be used out of the box without installation, providing users wi...

    2023-11-23
    See translation
  • Overview of Ultra Short Pulse Laser Processing of Wide Bandgap Semiconductor Materials

    Professor Zhang Peilei's team from Shanghai University of Engineering and Technology, in collaboration with the research team from Warwick University and Autuch (Shanghai) Laser Technology Co., Ltd., published a review paper titled "A review of ultra shot pulse laser micromachining of wide bandgap semiconductor materials: SiC and GaN" in the international journal Materials Science in Semiconductor...

    2024-07-30
    See translation
  • Shanghai Institute of Optics and Fine Mechanics has made progress in synchronously pumped ultrafast Raman fiber lasers

    Recently, the research team led by Zhou Jiaqi from the Aerospace Laser Technology and Systems Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the study of synchronously pumped ultrafast Raman fiber lasers. The related achievements were published in Optics Express under the title "Revealing influence of timing jitter on ultra fast...

    06-07
    See translation
  • First 6-inch thin film lithium niobate photonic chip wafer pilot production line

    Recently, Shanghai Jiao Tong University Wuxi Photon Chip Research Institute (CHIPX) located in Binhu District, Wuxi City, has achieved a breakthrough - the first 6-inch thin film lithium niobate photon chip wafer has been produced on China's first photon chip pilot line, and high-performance thin film lithium niobate modulator chips with ultra-low loss and ultra-high bandwidth have been mass-produ...

    06-11
    See translation
  • Chip guided beam for new portable 3D printers

    Imagine being able to carry a 3D printer with you and quickly create low-cost objects, such as fastening bicycle wheels or parts needed for critical medical surgeries. Scientists from the Massachusetts Institute of Technology (MIT) and the University of Texas at Austin have combined silicon photonics and photochemical technology to successfully develop the first chip based 3D printer, taking a cru...

    2024-06-18
    See translation