English

Laser direct writing technology for preparing micrometer scale heatable graphene de icing and anti icing surfaces broadens the preparation method of new de icing and anti icing devices

1096
2023-10-16 11:28:42
See translation

Research background
In transportation, industrial production, and practical life, icing often brings great troubles, and the most serious is that during the flight of an aircraft, key components once frozen will seriously affect navigation safety.

The traditional passive deicing and anti icing strategies for aircraft, such as mechanical vibration and anti freezing liquids, have problems such as incomplete deicing effect, environmental pollution, and reduced skin life; However, the common pneumatic and thermal active deicing and anti icing strategies on aircraft face problems such as inaccurate control and increased energy consumption. Although the new electric thermal active deicing and anti icing system has advantages such as high efficiency, good reliability, and easy control, the drawbacks of high electrical energy consumption have always limited its development. Currently, the industry urgently needs stable, efficient, and reliable new deicing and anti icing technologies.

Research Highlights 
This article focuses on the development bottleneck of high energy consumption in electric active deicing and anti icing, combined with the cutting-edge anti icing technology of hydrophobic materials in the current industry. With the help of Laser Induced Graphene (LIG) technology, which can simultaneously achieve graphene generation and precision patterning design, the common 10.6 μ By directly irradiating polyimide film (PI) with m CO2 laser and adjusting the scanning speed of the laser (50-125 mm/s), a micron scale grooved graphene surface with both hydrophobicity/superhydrophobicity and electrothermal function was successfully prepared under atmospheric pressure, expanding the preparation methods of new deicing and anti icing devices.

The basic characterization and performance testing of hydrophobic graphene surfaces revealed for the first time a significant linear negative correlation between the width of the grooves and scanning speed, which is of great significance for precise micro adjustment in laser manufacturing.

Low temperature icing tests and stability tests have shown that graphene surfaces have the potential to be reused for long-term hydrophobic and delayed icing applications.

Joule thermal performance tests have shown that graphene surfaces can achieve an electric heating effect of 45.5 ℃ -151.3 ℃ under low DC voltage supply (3 V-7 V), and can achieve surface defrosting and deicing functions (such as defrosting within 5 seconds and deicing within 90 seconds under 5V power supply) in an environment of -23 ℃.

The above research content and results demonstrate that laser induced graphene technology can efficiently and quickly convert polymer surfaces with hydrophilic wetting properties into micron scale hydrophobic graphene surfaces with hydrophobic wetting properties, providing a new approach and preparation method for preparing multifunctional deicing and anti icing surfaces with both hydrophobic and electrothermal functions.

The corresponding results were published in the Coatings journal under the title of "Fabric of Micron Structured Headable Graphene Hydrophobic Surfaces for Decking and Anti Icing by Laser Direct Writing". The first author of the article was Li Shichen, a 2021 master's student at the School of Avionics and Electrical Engineering, China Civil Aviation University, The co corresponding authors are Associate Professor Zhong Mian from the School of Avionics and Electrical Engineering, China Civil Aviation Flight Academy, and Professor He Qiang from the School of Civil Aviation Safety Engineering.

Source: Sohu


Related Recommendations
  • High sensitivity visualization of ultrafast carrier diffusion using a wide field holographic microscope

    A sketch of the imaging and holographic parts of a transient holographic microscope, including a pulse sequence, to illustrate the signal modulation method. By imaging the pinhole array at the sample position, a diffraction limited excitation spot array can be created, allowing for the simultaneous collection of transient data around 100 excitation spots.Femtosecond transient microscopy is an impo...

    2023-12-25
    See translation
  • Shanghai Microsystems Institute has developed a high-speed photon detector with distinguishable photon numbers

    Recently, Li Hao and You Lixing's team from the Chinese Academy of Sciences Shanghai Institute of Microsystems and Information Technology developed an ultrahigh speed, photon number resolvable optical quantum detector with a maximum count rate of 5GHz and a photon number resolution of 61 by using the sandwich structure superconducting nanowires and multi wires working in parallel. The related rese...

    2024-07-12
    See translation
  • Developing miniaturized laser technology: This company has secured $5 million in financing

    Recently, high-performance laser supplier Skylark Lasers announced that it has raised $5 million in investment to further advance its efforts in miniaturized laser technology.Skylark Lasers is established at the center of the Scottish Photonics Cluster, focusing on the design and production of compact diode pumped solid-state (C-DPSS) lasers with the purest spectral characteristics, providing high...

    2023-11-02
    See translation
  • AMCM 8 laser M 8K metal 3D printing equipment is about to be launched, equipped with 8 lasers

    In October 2023, Germany's AMCM (EOS, a global technology leader in industrial grade additive manufacturing) announced the upcoming launch of the M 8K metal 3D printing equipment. The device will be equipped with 8 lasers, with a construction volume of 800 x 800 x 1200 millimeters, nearly four times the size of AMCM's previously launched M 4K metal 3D printing device on the market.ArianeGroup's ho...

    2023-10-19
    See translation
  • IPG Japan office and technical center officially opened

    Recently, IPG Photonics, a leading company in the global fiber laser field, announced the official opening of its new office and central technology center in Japan, marking a solid step in the technology giant's strategic deployment in the Asia Pacific region.The opening of this new office not only demonstrates IPG Photonics' high regard for Japan and the entire Asia Pacific market, but also indic...

    2024-07-15
    See translation