English

Laser direct writing technology for preparing micrometer scale heatable graphene de icing and anti icing surfaces broadens the preparation method of new de icing and anti icing devices

6
2023-10-16 11:28:42
See translation

Research background
In transportation, industrial production, and practical life, icing often brings great troubles, and the most serious is that during the flight of an aircraft, key components once frozen will seriously affect navigation safety.

The traditional passive deicing and anti icing strategies for aircraft, such as mechanical vibration and anti freezing liquids, have problems such as incomplete deicing effect, environmental pollution, and reduced skin life; However, the common pneumatic and thermal active deicing and anti icing strategies on aircraft face problems such as inaccurate control and increased energy consumption. Although the new electric thermal active deicing and anti icing system has advantages such as high efficiency, good reliability, and easy control, the drawbacks of high electrical energy consumption have always limited its development. Currently, the industry urgently needs stable, efficient, and reliable new deicing and anti icing technologies.

Research Highlights 
This article focuses on the development bottleneck of high energy consumption in electric active deicing and anti icing, combined with the cutting-edge anti icing technology of hydrophobic materials in the current industry. With the help of Laser Induced Graphene (LIG) technology, which can simultaneously achieve graphene generation and precision patterning design, the common 10.6 μ By directly irradiating polyimide film (PI) with m CO2 laser and adjusting the scanning speed of the laser (50-125 mm/s), a micron scale grooved graphene surface with both hydrophobicity/superhydrophobicity and electrothermal function was successfully prepared under atmospheric pressure, expanding the preparation methods of new deicing and anti icing devices.

The basic characterization and performance testing of hydrophobic graphene surfaces revealed for the first time a significant linear negative correlation between the width of the grooves and scanning speed, which is of great significance for precise micro adjustment in laser manufacturing.

Low temperature icing tests and stability tests have shown that graphene surfaces have the potential to be reused for long-term hydrophobic and delayed icing applications.

Joule thermal performance tests have shown that graphene surfaces can achieve an electric heating effect of 45.5 ℃ -151.3 ℃ under low DC voltage supply (3 V-7 V), and can achieve surface defrosting and deicing functions (such as defrosting within 5 seconds and deicing within 90 seconds under 5V power supply) in an environment of -23 ℃.

The above research content and results demonstrate that laser induced graphene technology can efficiently and quickly convert polymer surfaces with hydrophilic wetting properties into micron scale hydrophobic graphene surfaces with hydrophobic wetting properties, providing a new approach and preparation method for preparing multifunctional deicing and anti icing surfaces with both hydrophobic and electrothermal functions.

The corresponding results were published in the Coatings journal under the title of "Fabric of Micron Structured Headable Graphene Hydrophobic Surfaces for Decking and Anti Icing by Laser Direct Writing". The first author of the article was Li Shichen, a 2021 master's student at the School of Avionics and Electrical Engineering, China Civil Aviation University, The co corresponding authors are Associate Professor Zhong Mian from the School of Avionics and Electrical Engineering, China Civil Aviation Flight Academy, and Professor He Qiang from the School of Civil Aviation Safety Engineering.

Source: Sohu


Related Recommendations
  • Chuangxin Laser Industry Dedicated Laser and Solutions Help Promote the Intelligent Development of Cladding Application Industry

    Laser cladding technology, also known as laser additive manufacturing technology, uses high-energy laser as the heat source and metal alloy powder as the cladding material. Through the synchronous action of laser and alloy powder on the metal surface, it quickly melts to form a molten pool, and rapidly solidifies to form a dense, uniform, and controllable thickness metallurgical bonding layer, the...

    2023-11-01
    See translation
  • BLM Group launches a new LT12 laser tube cutting system

    Recently, BLM Group in the United States has launched a new LT12 laser tube system, which performs well in cutting light and heavy pipes and profiles, and can handle materials with a diameter of up to 305 millimeters.According to the company, compared to other similar machines, the LT12 laser tube system reduces cutting time by up to 55% when cutting materials with the same maximum diameter, signi...

    04-18
    See translation
  • Investing nearly £ 520 million, this synchrotron light source in the UK will be upgraded

    Recently, the UK's national synchrotron "Diamond Light Source" announced an investment of nearly £ 520 million ($648.3 million) to implement three new flagship beam lines and upgrade existing beam lines. This comprehensive upgrade will be delivered by 2030.The Department for Science, Innovation, and Technology and the biomedical charity Wellcome jointly approved the facility upgrade project,...

    2023-09-27
    See translation
  • Tsinghua University has made progress in the field of magnetic field and laser composite processing

    The National Key Laboratory of Interface Science and Technology for High end Equipment at Tsinghua University has made progress in the field of magnetic field and laser composite processing - magnetic field assisted laser shock strengthening of Ti6Al4V alloy. The relevant research was published as a cover article titled "Magnetic Field Assisted Laser Shock Peening of Ti6Al4V Alloy" in the journal ...

    2023-09-16
    See translation
  • Turn to 4-inch wafers! Dutch Photonics Integrated Circuit Enterprise Announces Production Expansion and Price Reduction

    Recently, SMART Photonics, a Dutch photonic integrated circuit manufacturer, announced a major decision to transfer its entire production capacity from 3-inch wafers to 4-inch silicon substrates, thereby expanding the production scale of photonic chips and significantly reducing chip prices.According to the company, SMART Photonics is one of the first photonic integrated circuit foundries to provi...

    02-03
    See translation