English

20W High Power Fiber Optic Frequency Comb with 10 to 19 Power Outside Ring Frequency Stability

38
2023-10-20 14:19:08
See translation

High power optical frequency combs play a crucial role in nonlinear precision spectroscopy, extreme ultraviolet optical frequency comb generation, nuclear atomic clock research, and other fields. Fiber optic femtosecond lasers are the preferred solution for achieving high power optical frequency combs due to their simple structure, stable performance, and easy amplification. However, due to the unavoidable spontaneous emission (ASE) noise, pump intensity noise, spectral coherence degradation, and phase jitter caused by optical path in fiber laser amplification, the frequency stability of the optical comb is seriously affected. Therefore, obtaining high frequency stability while amplifying high power is a highly challenging task.

In response to the above problems, Group L07 of the Institute of Physics of the Chinese Academy of Sciences/Key Laboratory of Optical Physics of the National Research Center of Condensed Matter Physics in Beijing, based on long-term research on optical frequency comb technology, has proposed in recent years the use of low-noise fiber seed source, linear chirped pulse amplification, rapid phase modulation of intracavity electro-optic crystals and other technical solutions, And by using tapered photonic crystal fibers to generate high coherence supercontinuum spectra and combining various engineering designs such as structural integration, temperature control, and vibration isolation, the noise of optical frequency combs is effectively reduced.

Recently, associate researchers Han Hainian and postdoctoral fellow Shao Xiaodong of the group further achieved an external frequency stability of 10-19/1000s on a 20W high average power fiber optic frequency comb. It is known that this has achieved the frequency stability of the best optical atomic clock currently available, and is also the best result achieved by high-power optical frequency combs to date. Figure 1 shows the schematic diagram of two identical high-power fiber optic comb engineering prototypes and the measurement of frequency stability through the comparison of external dual combs.

In the study, a self built nonlinear polarization rotation mode locked (NPR) fiber laser oscillator was used as a femtosecond seed pulse source. After linear fiber chirped pulse amplification (CPA), a high-power femtosecond laser output with an average power greater than 20 W and a pulse width of 75 fs was obtained. The locked frequency stability of the carrier envelope phase shift (CEO) frequency is 1.5 × 10-17/s. When locking the optical frequency, the femtosecond pulses output from different branches of the oscillator and amplifier and the ultra stable reference laser beat separately. If the beat signal of the amplifier is used for locking, the frequency stability inside the high-power amplification laser ring can be measured to reach 2 × 10-18/s, while in the case of only locking the femtosecond pulse output of the oscillator, if the amplifier is allowed to operate freely, the frequency stability can only reach 10-15/s, which is three orders of magnitude different.

The noise power spectrum analysis shows that the amplifier introduces a large amount of low-frequency noise, which has a significant impact on the long-term stability of the optical frequency comb frequency. At a gate time of 1000 s, this difference can even reach four orders of magnitude, as shown in Figure 2 (a). In addition, the phase noise analysis results that characterize the short-term stability of the frequency also indicate that after a series of noise control measures, the high-frequency noise introduced by the amplifier is very small and does not affect the short-term stability of the system.

In order to evaluate the frequency stability performance of the high average power optical frequency comb in practical applications, this study conducted the first measurement of external frequency comparison between two 20W high-power fiber laser frequency combs. The measurement results indicate that under 1 second integration time, the typical stability value of the out of loop frequency is 4.35 × 10-17/s, 1000 s integration time drops to 6.54 × 10-19, as shown in Figure 2 (b), will open up new doors for many applications that require high-power and high frequency stability optical combs.

The research progress was recently published in Optics Express under the title "High power optical frequency comb with 10-19 frequency feasibility". (Opt. Express 31 (20), 32813-32823 (2023)). The first author of the article is Shao Xiaodong, and the collaborating mentors are Wei Zhiyi and Han Hainian. The work was supported by the Chinese Academy of Sciences pilot projects (XDA150204004, XDB210104004) and the National Natural Science Foundation of China (60808007613780401107802291850209).

Figure 1 (a) Photos of the prototype of the engineering principle of high-power optical fiber comb, (b) Schematic diagram of the measurement of frequency stability outside the high-power optical frequency comb ring


Figure 2 (a) Frequency stability locked by oscillator and amplifier respectively, (b) Frequency stability compared to high-power optical frequency comb ring

Source: Institute of Physics, Chinese Academy of Sciences

Related Recommendations
  • Reverse Modeling of 3D Scanning Reading in Hong Kong: Production Innovation in the Digital Era

    In the wave of the digital age, Hong Kong, as an international business center, constantly explores the application of new technologies in the manufacturing industry. Among them, 3D scanning and reverse modeling technology is emerging, bringing a new production innovation to the manufacturing industry. This article will explore the application of 3D scanning and reverse modeling in Hong Kong, as w...

    2024-03-30
    See translation
  • Researchers successfully 3D printed polymer based robotic arms through laser scanning

    Researchers from the Federal Institute of Technology in Zurich and an American startup used slow curing plastic to develop durable and sturdy robots using high-quality materials.The team can now print these complex robots at once and combine soft, elastic, and rigid materials together. This allows for the creation of precision structures and parts with cavities as needed.Inkbit, a derivative compa...

    2023-11-16
    See translation
  • Laser printing on fallen leaves can produce sensors for medical and laboratory use

    The manufacturing of sensors through 3D printing combines speed, design freedom, and the possibility of using waste as a substrate. In the circular economy model, various results have been achieved, and typically discarded residues are used as low-cost resources. A research team in Brazil has proposed a highly creative solution that involves printing electrochemical sensors on fallen leaves. The t...

    2024-05-16
    See translation
  • Strategy Networks Utilizes Ekinops for Optical Network Upgrade

    Strata Networks is one of the fastest growing communication cooperatives in Utah, and has chosen Ekinops360 from Ekinops as the platform to upgrade its optical transmission network.Strata is headquartered in Roosevelt, Utah, with a network spanning the Uintah Basin, the Vasatch Front, and Denver. The cooperative continues to expand and improve its fiber optic footprint to differentiate its telepho...

    2023-11-21
    See translation
  • LAP launches CAD-PRO Xpert, an industrial laser projector using cutting-edge technology platforms

    LAP launched its latest version of the industrial laser projection system CAD-PRO Xpert at this year's JEC World. This innovation signifies the company's commitment to providing the most advanced laser engineering for various industries to achieve precise, efficient, and reliable laser guidance and positioning tasks, which is an important milestone.Redefining laser projection in the production pro...

    2024-03-07
    See translation