English

New type of femtosecond laser: used for broadband terahertz generation and nonlinear wafer detection

457
2024-06-26 13:51:22
See translation

Recently, HüBNER Photonics, the leading manufacturer of high-performance lasers, has launched the latest member of the VALO femtosecond series - VALO Tidal. This laser not only represents a major leap in the fields of imaging, detection, and analysis, but also demonstrates the infinite possibilities of laser technology with its outstanding performance.

The VALO Tidal femtosecond laser typically shortens its pulse duration to 40 femtoseconds and achieves an output power of up to 2 watts, which is unprecedented in the industry. This breakthrough progress is attributed to the proprietary fiber laser technology of the VALO femtosecond series lasers. The perfect combination of linear and nonlinear effects enables the optical bandwidth to far exceed the gain bandwidth, providing users with unparalleled performance experience.

The design of this laser is ingenious, generating clean and ultrafast light pulses through passive cooling. Its pulse duration is less than 50 femtoseconds, with a peak power level of up to 2 megawatts, demonstrating its outstanding performance advantages. In addition, the wide spectral bandwidth of VALO Tidal covers 1000 to 1100 nanometers, making it an ideal choice for second and third harmonic imaging.

Not only that, VALO Tidal is also equipped with an integrated dispersion pre compensation unit, allowing users to fully utilize its excellent peak power and wide spectrum bandwidth. This feature is not only applicable to most nonlinear applications, such as high harmonic imaging and broadband terahertz generation, but also to fields such as nonlinear wafer detection. The launch of VALO Tidal will undoubtedly bring a revolution to imaging technology, driving research and application in related fields to new heights.

Source: OFweek

Related Recommendations
  • Scientists use the light inside fibers as thin as hair to calculate

    Scientists from Heriot Watt University in Edinburgh, Scotland have discovered a powerful new method for programming optical circuits, which is crucial for the delivery of future technologies such as unbreakable communication networks and ultrafast quantum computers."Light can carry a large amount of information, and optical circuits that use light instead of electricity are seen as the next majo...

    2024-01-20
    See translation
  • High precision laser linkage platform to help precision processing

    With the trend of industrial intelligence and precision processing, the demand for laser precision processing in precision 3C industry, machinery and equipment, new energy vehicles and other industries has developed rapidly, making the application of laser processing technology in the industrial field more comprehensive promotion.Due to the inherent nonlinear characteristics between optics and sca...

    2023-09-11
    See translation
  • New Progress: III-V Laser and Silicon Optics Technology Achieve Single Chip High Integration

    Recently, Scientific Photonics, a supplier of silicon photonic integrated circuits (PICs) headquartered in Grenoble, announced that it has successfully integrated III-V-DFB lasers and amplifiers with standard silicon photonic technology into the production process of Tower Semiconductor.By utilizing proprietary technology and standard silicon photonics, Scientific Photonics has achieved full inte...

    2024-03-01
    See translation
  • French researchers develop spiral lenses with optical vortex effects

    As humans stand at the forefront of a new era of space exploration, the National Laboratory of the International Space Station is taking the lead in carrying out a groundbreaking initiative that may completely change the way we understand and utilize space for research and development. In a recent development, Northrop Grumman's 20th commercial supply service mission has become an innovative light...

    2024-02-17
    See translation
  • Multi functional materials for solar cells and organic light-emitting diodes to achieve high performance and stability

    Through joint research, a team developed a 4-amino-TEMPO derivative with photocatalytic performance and successfully used it to produce high-performance and stable fiber like dye sensitized solar cells (FDSSCs) and fiber like organic light-emitting diodes (FOLEDs). This paper was published in the journal Materials and Energy Today.The developed 4-amino-TEMPO derivatives have the characteristic of ...

    2024-06-03
    See translation