English

The project cycle has been significantly shortened! Scientists use supercomputing to assist in laser fusion research

966
2023-10-26 13:58:46
See translation

Recently, the Laser Energy Laboratory (LLE) at the University of Rochester installed a new supercomputer to support its laser fusion experiments.

The new supercomputer has increased the computing power of the laboratory by four times and shortened the time required to complete certain projects from 30 weeks to a few days.

The Laser Energy Laboratory (LLE) at the University of Rochester is one of the few facilities in the world that studies laser driven inertial confinement fusion (ICF). Scientists use these facilities for national security purposes and obtain energy from nuclear fusion.
Valeri Goncharov, the director of the theoretical department and scientist at the laboratory, said, "A new supercomputer located at the university will enable researchers to simulate complex high-energy density phenomena in ICF in three-dimensional space with unprecedented detail.

For example, it is very difficult, if not impossible, to directly measure the evolution of micrometer scale target defects in implosion. However, detailed 3D simulations can simulate how this phenomenon changes experimental observations that are easier to measure, "Goncharov explained." Discovering the correlation between simulation results and experimental data will help determine the importance of sub scale target features and other complex physical effects in experiments.

The machine is called "Conesus" and is manufactured by Intel and developed in collaboration with Dell Technologies and Lawrence Livermore National Laboratory (LLNL). It is currently one of the only seven fourth generation Intel Sapphire Rapids systems worldwide and one of the only two systems in the United States.

The 'TOP 500 List' project began in 1993 and publishes the latest list of the world's most powerful supercomputers twice a year.

How will laser fusion experiments benefit?
The Laser Energy Laboratory at the University of Rochester has two very powerful lasers - Omega and Omega EP - used by researchers for research, including those involving ICF. Last year, scientists made a breakthrough in ignition (i.e. fusion reactions that generate net energy gain) at LLNL's National Ignition Facility (NIF), and this work is based on this breakthrough.

William Scullin, the head of the high-performance computing team at the laboratory, said, "Approximately 10 times a day, our laser is used to create a high-energy star in a jar
But the path to laser driven inertial confinement fusion (ICF) begins with supercomputers modeling materials, lasers, and experiments themselves.

Scullin said, "We have 1D, 2D, and 3D modeling capabilities to simulate inertial confinement fusion. We simulate materials and plasma under extreme temperatures and pressures. High power lasers are not commercially available components. Therefore, we have designed many of our own optical and laser systems internally. In addition, there is an increasing amount of statistical work to be done.

According to Scullin, as the demand for statistical analysis increases, computational scientists are exploring how to use machine learning to discover what from old and new data. To make these discoveries possible, LLE needs new computing resources.
Scullin stated that Conesus will provide scientists with computing resources to collect more data and conduct high-resolution research, including using machine learning on larger datasets. Projects that may take 30 weeks to complete on early systems can be completed within a few days using Conesus.

Conesus has planned several projects, including testing a statistical model for low-temperature implosion in Omega laser systems; simulation α Particle cessation and combustion of plasma; Studying liquid crystals produces large responses and has very high thermal stability.

The Laser Energy Laboratory (LLE) at the University of Rochester will accommodate two 25 gigawatt lasers as part of a project supported by the National Science Foundation (NSF) at the University of Rochester, with a budget of $18 million and a duration of 3 years. As part of this project, the laboratory will establish a new facility called EP-OPAL, which will be dedicated to studying the interaction between ultra-high intensity lasers and matter.

Source: OFweek

Related Recommendations
  • A US research team has developed a new type of photonic memory computing device

    Recently, a research team from the University of California, Santa Barbara has successfully developed a new type of photonic memory computing device that integrates non reciprocal magneto-optical technology. This device achieves high-speed, high-energy efficiency, and ultra-high durability photon computing by utilizing the non reciprocal phase shift phenomenon. The research findings, titled "Integ...

    2024-10-24
    See translation
  • 2D photoelectric neuron array can achieve broadband and low loss optical nonlinearity accessible to ambient light

    Light can calculate functions during propagation and interaction with structured materials, with fast speed and low energy consumption. The use of all optical neural networks for general computing requires an optical activation layer with nonlinear dependence on the input. However, existing optical nonlinear materials either have slow speeds or very weak nonlinearity at the level of natural light ...

    2024-03-20
    See translation
  • Researchers have created the first organic semiconductor laser that can be operated without the need for a separate light source

    Researchers at the University of St. Andrews in Scotland have manufactured the first organic semiconductor laser to operate without the need for a separate light source - which has proven to be extremely challenging. The new all electric driven laser is more compact than previous devices and operates in the visible light region of the electromagnetic spectrum. Therefore, its developers stated that...

    2023-11-15
    See translation
  • NLIGHT announces financial performance for the fourth quarter and full year of 2024

    Recently, nLIGHT, a manufacturer of high-power semiconductors and fiber lasers, announced its financial performance for the fourth quarter and full year of 2024.financial summaryTotal revenue: 198.5 million US dollars, a decrease from 209.9 million US dollars in 2023, due to a decline in sales in the laser product department.Operating loss: A loss of $65.6 million, compared to a loss of $46.8 mill...

    03-04
    See translation
  • Laser driven leap forward: the next generation of magnetic devices for controlling light is born

    Recently, a new laser heating technology developed by a Japanese research group has paved the way for advanced optical communication equipment by integrating transparent magnetic materials into optical circuits.This breakthrough was recently published in the journal Optical Materials. It is crucial for integrating magneto-optical materials and optical circuits, which has been a significant long-te...

    2023-12-21
    See translation