English

The project cycle has been significantly shortened! Scientists use supercomputing to assist in laser fusion research

192
2023-10-26 13:58:46
See translation

Recently, the Laser Energy Laboratory (LLE) at the University of Rochester installed a new supercomputer to support its laser fusion experiments.

The new supercomputer has increased the computing power of the laboratory by four times and shortened the time required to complete certain projects from 30 weeks to a few days.

The Laser Energy Laboratory (LLE) at the University of Rochester is one of the few facilities in the world that studies laser driven inertial confinement fusion (ICF). Scientists use these facilities for national security purposes and obtain energy from nuclear fusion.
Valeri Goncharov, the director of the theoretical department and scientist at the laboratory, said, "A new supercomputer located at the university will enable researchers to simulate complex high-energy density phenomena in ICF in three-dimensional space with unprecedented detail.

For example, it is very difficult, if not impossible, to directly measure the evolution of micrometer scale target defects in implosion. However, detailed 3D simulations can simulate how this phenomenon changes experimental observations that are easier to measure, "Goncharov explained." Discovering the correlation between simulation results and experimental data will help determine the importance of sub scale target features and other complex physical effects in experiments.

The machine is called "Conesus" and is manufactured by Intel and developed in collaboration with Dell Technologies and Lawrence Livermore National Laboratory (LLNL). It is currently one of the only seven fourth generation Intel Sapphire Rapids systems worldwide and one of the only two systems in the United States.

The 'TOP 500 List' project began in 1993 and publishes the latest list of the world's most powerful supercomputers twice a year.

How will laser fusion experiments benefit?
The Laser Energy Laboratory at the University of Rochester has two very powerful lasers - Omega and Omega EP - used by researchers for research, including those involving ICF. Last year, scientists made a breakthrough in ignition (i.e. fusion reactions that generate net energy gain) at LLNL's National Ignition Facility (NIF), and this work is based on this breakthrough.

William Scullin, the head of the high-performance computing team at the laboratory, said, "Approximately 10 times a day, our laser is used to create a high-energy star in a jar
But the path to laser driven inertial confinement fusion (ICF) begins with supercomputers modeling materials, lasers, and experiments themselves.

Scullin said, "We have 1D, 2D, and 3D modeling capabilities to simulate inertial confinement fusion. We simulate materials and plasma under extreme temperatures and pressures. High power lasers are not commercially available components. Therefore, we have designed many of our own optical and laser systems internally. In addition, there is an increasing amount of statistical work to be done.

According to Scullin, as the demand for statistical analysis increases, computational scientists are exploring how to use machine learning to discover what from old and new data. To make these discoveries possible, LLE needs new computing resources.
Scullin stated that Conesus will provide scientists with computing resources to collect more data and conduct high-resolution research, including using machine learning on larger datasets. Projects that may take 30 weeks to complete on early systems can be completed within a few days using Conesus.

Conesus has planned several projects, including testing a statistical model for low-temperature implosion in Omega laser systems; simulation α Particle cessation and combustion of plasma; Studying liquid crystals produces large responses and has very high thermal stability.

The Laser Energy Laboratory (LLE) at the University of Rochester will accommodate two 25 gigawatt lasers as part of a project supported by the National Science Foundation (NSF) at the University of Rochester, with a budget of $18 million and a duration of 3 years. As part of this project, the laboratory will establish a new facility called EP-OPAL, which will be dedicated to studying the interaction between ultra-high intensity lasers and matter.

Source: OFweek

Related Recommendations
  • Snapmaker introduces new 20W and 40W laser modules

    Snapmaker has opened pre-orders for 20W and 40W laser modules, which are significant upgrades to the modules available on existing Snapmaker machines.Snapmaker says that with the 40W module installed, you will be able to cut 15 mm basswood plywood at a time at a speed of 20 mm/SEC. With 20W, you will cut 10mm at a rate of 10mm/SEC. That's a lot more than Artisan and Snapmaker 2.0 - both are comp...

    2023-08-04
    See translation
  • Scientists build high-power cladding-pumped Raman fiber laser in 1.2 μm band

    Laser sources operating in the 1.2 μm band have some unique applications in photodynamic therapy, biomedical diagnostics, and oxygen sensing. In addition, they can be used as pump sources for mid-infrared optical parameter generation and visible light generation through frequency doubling.Laser generation in the 1.2 μm band has been achieved by different solid-state lasers, including semicon...

    2024-01-31
    See translation
  • Micro ring resonators with enormous potential: hybrid devices significantly improve laser technology

    The team from the Photonic Systems Laboratory at the Federal Institute of Technology in Lausanne has developed a chip level laser source that can improve the performance of semiconductor lasers while generating shorter wavelengths.This groundbreaking work, led by Professor Camille Br è s and postdoctoral researcher Marco Clementi from the Federal Institute of Technology in Lausanne, represe...

    2023-12-11
    See translation
  • High precision laser linkage platform to help precision processing

    With the trend of industrial intelligence and precision processing, the demand for laser precision processing in precision 3C industry, machinery and equipment, new energy vehicles and other industries has developed rapidly, making the application of laser processing technology in the industrial field more comprehensive promotion.Due to the inherent nonlinear characteristics between optics and sca...

    2023-09-11
    See translation
  • Researchers prepare a new type of optical material with highly tunable refractive index

    It is reported that researchers from Beijing University of Chemical Technology and BOE Technology Group Co., Ltd. have collaborated to develop a transparent organic-inorganic composite optical adhesive material with highly tunable refractive index. The related research paper was recently published in Engineering.In the early days, glass was the main raw material for optical components. In recent y...

    2024-06-25
    See translation