English

Researchers have created the first organic semiconductor laser that can be operated without the need for a separate light source

901
2023-11-15 13:53:24
See translation

Researchers at the University of St. Andrews in Scotland have manufactured the first organic semiconductor laser to operate without the need for a separate light source - which has proven to be extremely challenging. The new all electric driven laser is more compact than previous devices and operates in the visible light region of the electromagnetic spectrum. Therefore, its developers stated that it may play a role in applications such as sensing and spectroscopy.

The working principle of a laser is that light is reflected back and forth in an optical cavity composed of a gain medium sandwiched between two mirrors. When light bounces back and forth between mirrors, the gain medium amplifies it, stimulates more light emission, and generates coherent beams with a very narrow spectral range.

In 1992, the first organic laser was introduced. However, the laser uses a separate light source to drive its gain medium, which makes its design complex and limits its application. Since then, researchers have been trying to find a way to manufacture an organic laser that only uses an electric field to drive it, but without success. Therefore, in the past 30 years, this has been a huge challenge in this field, "explained physicist Ifor Samuel, who led the new study together with his colleague Graham Turnbull from St. Andrews.

Firstly, breaking the world record
Samuel explained that there are two main strategies for designing electrically driven organic lasers. The first method is to place electrical contacts on organic laser gain media and inject charges through them. However, it is difficult to manufacture a laser in this way, as the injected charge absorbs light from the emission spectrum of the material through the so-called triplet state. The contacts themselves also absorb light. Due to the fact that lasers require gain to exceed loss, this light absorption is a huge obstacle, "Samuel said.

In the new study detailed in the journal Nature, researchers solved this problem in a second way: by keeping charges, triplets, and contacts at a distance from the laser gain medium in space. However, achieving this is not an easy task, as it means they need to manufacture a pulse blue organic light emitting diode with world record light output intensity to drive the gain medium. Then, they need to find a way to couple all the light from OLEDs into a laser made of a layer of semiconductor polymer that emits green light.
In order to manufacture this type of device, we initially manufactured OLEDs and laser cavities separately, and then transferred OLEDs onto a substrate with a thickness of only a few micrometers, onto the surface of the laser waveguide, "he said. The careful integration of these two parts is crucial for the gain medium to obtain strong electroluminescence generated inside OLEDs.

To complete the design, the team used diffraction gratings in thin film lasers to provide distributed feedback of stimulated emission on the thin film plane, while diffracting the output laser beam from the surface.

Slow technological acceleration
Organic semiconductor devices are widely considered a "slow" technology because the charge mobility in organic materials is usually several orders of magnitude lower than that of silicon or III-V group crystal semiconductors. However, Turnbull believes that the team's innovation may begin to change this perception. Our work is pushing these materials into a very fast and intensive operational solution, "he told Physical World.

As for applications, researchers say that the new all electric organic semiconductor laser will be directly integrated into real-time medical devices that use light based sensing and spectroscopy to diagnose diseases or monitor symptoms. Electric drives eliminate the need for individual light sources to pump them, which should expand potential applications, "Turnbull said.

However, further work needs to be done to optimize the output power and efficiency of the new laser and expand its light output in the visible spectrum. The next major challenge in this field will be to manufacture continuous wave organic semiconductor lasers, which will require further control of the troublesome triplet population, "concluded Turnbull.

Source: Laser Network

Related Recommendations
  • Xi'an Institute of Optics and Fine Mechanics has made new progress in the field of metasurface nonlinear photonics

    Recently, the Research Group of Nonlinear Photonics Technology and Applications in the State Key Laboratory of Transient Optics and Photonics Technology of Xi'an Institute of Optics and Fine Mechanics has made important progress in the field of super surface nonlinear photonics. Relevant research results were published in the internationally famous journal Nanoscale Horizons. The first author of t...

    2024-09-27
    See translation
  • IPG Photonics has unveiled a new dual-beam laser with single-mode core power at the Novi Battery Show in Michigan

    IPG Photonics Corporation, a global leader in fiber laser technology, will highlight new and innovative laser solutions at the Battery Show from September 12 to 14, 2023 in Novi, Michigan, USA.The IPG booth will include industry-leading fiber laser sources and automated laser systems for electric vehicle battery welding applications.New laser technology pushes the limits of battery welding speedTo...

    2023-09-12
    See translation
  • Is CTC technology in the booming new energy industry likely to disrupt the fiber laser industry?

    Recently, the term CTC technology has become a hot topic in the new energy vehicle industry. During the relatively slow period of electrochemical innovation, this structural innovation effectively helped the new energy industry reduce costs and increase efficiency, while also increasing the range of new energy vehicles to a certain extent. However, recently the author learned that the concept of C...

    2023-09-18
    See translation
  • This innovation will significantly improve the sensitivity of gravitational wave detectors

    In 2017, the detection of gravitational waves generated by the merger of binary neutron stars marked a significant breakthrough in physics. These waves reveal important information about the universe, from the origin of short gamma ray bursts to the formation of heavy elements.However, capturing gravitational waves from the merged residue remains a challenge as these waves avoid the detection rang...

    2024-04-17
    See translation
  • BMW uses WAAM 3D printing to optimize derivative designs

    BMW explained how to use WAAM (Arc Additive Manufacturing) starting from 2025 to manufacture lighter and stronger automotive components and reduce waste generation, in order to optimize the use of generative design tools.The demonstrated WAAM process uses aluminum wire raw materials directly deposited through laser welding heads, enabling automotive companies to manufacture lighter and more robust...

    2024-04-13
    See translation