English

The University of California has developed a pioneering chip that can simultaneously carry lasers and photonic waveguides

1236
2023-08-10 18:28:38
See translation

A team of computer and electrical engineers at UC Santa Barbara, in collaboration with several colleagues at Caltech and another colleague at Anello Photonics, has developed a first-of-its-kind chip that can carry both laser and photonic waveguides. In a paper published in the journal Nature, the team describes how they made the chip and how it worked during testing.

With the advent of integrated circuits, scientists learned to place transistors, diodes, and other components on a single chip, greatly increasing their potential. In the past few years, researchers working on photonics have hoped to achieve the same feat. People in the field say that the development of similar photonic chips could lead to more precise experiments with atomic clocks and could also be used for quantum applications. It will also reduce the need for huge optical platforms.

In order for such a chip to work, it must house both the laser and the photon waveguide. For this purpose, engineers have developed plug-in isolators to prevent reflections and thus avoid instability in the absence of plug-in isolators. Unfortunately, this method requires the use of magnetism, which causes problems in production. In this new effort, the research team found a way to overcome these problems and create the first truly usable composite chip.

To make the chip, the researchers first placed ultra-low loss silicon nitride waveguides on a silicon substrate. They then covered the waveguide with a variety of silicon and installed a low-noise indium phosphate laser on the waveguide. By separating the two components, the team prevented damage to the waveguide during etching.

The team notes that separating the two components also requires the use of a redistribution layer made of silicon nitride to allow interaction between the two components via the evanescent field. The distance formed by the silicon layer between the two components minimizes interference.

The researchers first measured its noise levels to test their chip. They found they were satisfied and then used it to create a tunable microwave frequency generator. They describe their chip as "a critical step toward complex systems and networks on silicon."

Source: Laser Network

Related Recommendations
  • Application of Laser Welding Technology in Ceramic Substrate Industry

     Ultra short laser pulses for local welding (Source: Fraunhofer IOF)With the accelerated evolution of electronic devices towards high power, high frequency, and miniaturization, ceramic substrates have become core materials in fields such as power semiconductors, 5G communications, and new energy vehicles due to their excellent thermal conductivity, insulation, and high temperature resistance. H...

    03-17
    See translation
  • NASA will demonstrate laser communications from the space station

    NASA's ILLUMA-T payload communicates with the LCRD via laser signals.NASA uses the International Space Station, a spacecraft the size of a football field orbiting the Earth, to learn more about living and working in space. For more than 20 years, the space station has provided a unique platform for investigation and research in the fields of biology, technology, agriculture and more. It is home to...

    2023-09-02
    See translation
  • Research progress on the interaction between strong laser and matter Electromagnetic induced transparency effect in plasma physics

    The transmission of electromagnetic waves (such as lasers) in plasma is a fundamental issue in plasma physics. In general, electromagnetic waves cannot be transmitted in high-density plasma, but their transmission and energy transfer play a crucial role in applications such as fast ignition laser fusion, laser particle acceleration, and ultra short and ultra bright radiation sources.In 1996, S. fr...

    2024-03-21
    See translation
  • Researchers improve laser behavior by tying laser knots

    Researchers have created a new type of laser that, despite environmental noise and manufacturing defects, still performs as expected. Technically speaking, researchers have created a topology, time, and mode-locked laser. This study has the potential to improve sensors and computing hardware.A mode-locked laser emits light with regular pulses instead of a continuous beam. Pulses can be very counta...

    2024-03-07
    See translation
  • The emergence of laser engraving glass technology injects exquisite and vivid artistic quality into glass works

    The emergence of laser inner glass carving technology has brought new forms and possibilities of artistic expression to glass art. It not only showcases advanced technology and innovative craftsmanship, but also endows glass works with unique artistry.Firstly, laser engraved glass can achieve very fine and complex carving effects. By penetrating the interior of glass with a laser beam for carving,...

    2023-09-15
    See translation