English

The University of California has developed a pioneering chip that can simultaneously carry lasers and photonic waveguides

118
2023-08-10 18:28:38
See translation

A team of computer and electrical engineers at UC Santa Barbara, in collaboration with several colleagues at Caltech and another colleague at Anello Photonics, has developed a first-of-its-kind chip that can carry both laser and photonic waveguides. In a paper published in the journal Nature, the team describes how they made the chip and how it worked during testing.

With the advent of integrated circuits, scientists learned to place transistors, diodes, and other components on a single chip, greatly increasing their potential. In the past few years, researchers working on photonics have hoped to achieve the same feat. People in the field say that the development of similar photonic chips could lead to more precise experiments with atomic clocks and could also be used for quantum applications. It will also reduce the need for huge optical platforms.

In order for such a chip to work, it must house both the laser and the photon waveguide. For this purpose, engineers have developed plug-in isolators to prevent reflections and thus avoid instability in the absence of plug-in isolators. Unfortunately, this method requires the use of magnetism, which causes problems in production. In this new effort, the research team found a way to overcome these problems and create the first truly usable composite chip.

To make the chip, the researchers first placed ultra-low loss silicon nitride waveguides on a silicon substrate. They then covered the waveguide with a variety of silicon and installed a low-noise indium phosphate laser on the waveguide. By separating the two components, the team prevented damage to the waveguide during etching.

The team notes that separating the two components also requires the use of a redistribution layer made of silicon nitride to allow interaction between the two components via the evanescent field. The distance formed by the silicon layer between the two components minimizes interference.

The researchers first measured its noise levels to test their chip. They found they were satisfied and then used it to create a tunable microwave frequency generator. They describe their chip as "a critical step toward complex systems and networks on silicon."

Source: Laser Network

Related Recommendations
  • Four ways researchers harness the power of lasers to achieve manufacturing excellence

    The use of industrial lasers has become a viable option for many manufacturing processes. It enables workers to simplify steps, improve precision and benefit from the benefits associated with output. Decision makers will get the best results when they consider the specific possibilities of using lasers in manufacturing. Here are some options.Improved cleaning and texturing methodsMany man...

    2023-08-04
    See translation
  • Dazu Photonics launched the third generation of high power fiber laser successfully increased the product power to 50kW

    In recent years, with the vigorous development of new energy and other industries, the improvement of environmental awareness and the increasing demand for new applications, the demand for fiber lasers in intelligent manufacturing is increasing, and the demand for power is also increasing, and high-power fiber lasers can significantly improve production efficiency and are widely sought after by th...

    2023-09-02
    See translation
  • IPG launches dual beam fiber laser for additive manufacturing applications

    Recently, American fiber laser giant IPG Photonics announced the launch of a new laser series specifically designed for the additive manufacturing field.The highlight of this series of lasers lies in its integration of IPG's unique dual beam technology, which can independently regulate and simultaneously emit core and ring beams, setting a new benchmark in accuracy, efficiency, and reliability.Ba...

    2024-11-25
    See translation
  • Halloween\Christmas Laser Processing Art Carnival !!

    Chanelink Halloween\Christmas Laser Processing Art CarnivalShow your design talent and win a cool laser engraver cutter.TimeUpload of work and canvassing period: October 25, 2023 - December 25, 2023Winner announcement time : December 29, 2023ContentEligible participant:Laser industry practitioners, enthusiasts, who must be at least 18 years old.Awards:First prize (1...

    2023-10-25
    See translation
  • Eoptolink launches optical transceivers for immersion cooling

    Eoptolink Technology has expanded its product portfolio to meet the new market of optical transceiver modules operating in environments using immersion cooling.The Eoptolink EOLO-138HG-5H-SYMR is an optical transceiver for the 800G OSFP DR8, which can be completely immersed in a 2-phase liquid cooling environment. The EOLO-138HG-02-SYMR is an 800G OSFP DR8+. This transceiver has fiber optic tail f...

    2024-03-26
    See translation