English

Progress has been made in the research of phase modulation of terahertz programmable metasurfaces based on free carrier plasmonic dispersion effect

1167
2024-07-26 14:33:32
See translation

Recently, the team of Situ Guohai and Guo Jinying from the Aerospace Laser Technology and Systems Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, and the School of Microelectronics at Shanghai University collaborated to propose a terahertz phase controlled programmable metasurface design scheme based on free carrier plasma dispersion effect. The related research results were published in Applied Physics Letters under the title "Terahertz programmable metasurface for phase modulation based on free carrier plasma dispersion effect".

Terahertz modulators have broad application prospects in fields such as terahertz intelligent communication and computational imaging. However, existing terahertz phase modulators are not satisfactory in terms of speed, efficiency, and flux. Therefore, there is an urgent need to develop high-speed, efficient, and high-throughput terahertz spatial light modulators.

The research team proposed a terahertz programmable metasurface design scheme based on the free carrier plasmonic dispersion effect. By integrating the pn junction into the "H" - shaped metal metasurface unit structure and utilizing the change in external voltage to alter the carrier concentration distribution of the pn junction, continuous phase control at a frequency of 0.4 THz and 270 ° with an average efficiency of 30% were achieved in simulation. The metasurface unit adopts a "MIM" structure, and each unit is independently adjustable, while utilizing the high-speed switching characteristics of the pn junction, which is expected to achieve GHz level control speed. The team also demonstrated the far-field radiation results of the metasurface unit array, with a peak sidelobe ratio of 13dB, demonstrating excellent beam steering performance. The high-speed, efficient, and high-throughput advantages demonstrated by this design scheme in terahertz phase modulation are expected to play an important role in terahertz communication and imaging fields.

Figure 1. Schematic diagram of programmable metasurface unit structure and beam steering function

Figure 2. Continuous phase modulation of metasurface units under voltage

This research achievement has received support from the National Natural Science Foundation of China, the Shanghai Academic Research Leader Project, and the Shanghai Municipal Science and Technology Major Project.

Source: Shanghai Institute of Optics and Fine Mechanics

Related Recommendations
  • Preparation of all silicon dielectric metasurface by femtosecond laser modification combined with wet etching, achieving ideal compatibility with complementary metal oxide semiconductor technology

    The fully dielectric element surface has the characteristics of low material loss and strong field localization, making it very suitable for manipulating electromagnetic waves at the nanoscale. Especially the surface of all silicon dielectric elements can achieve ideal compatibility with complementary metal oxide semiconductor technology, making it an ideal choice for large-scale monolithic integr...

    2023-10-23
    See translation
  • New type of metasurface with adjustable beam frequency and direction

    Recently, according to the journal Nature Nanotechnology, a team from the California Institute of Technology reported that they have constructed a metasurface covered with micro adjustable antennas that can reflect incident light beams: one beam of light enters and multiple beams of light exit, each with a different frequency and propagating in a different direction. This is a new method for proce...

    2024-07-30
    See translation
  • Magdalena Ridge expands the capacity of optical interferometers

    The Magdalena Ridge Observatory has purchased a second-generation off-axis beam compressor from Optical Surface, which will expand the functionality of the facility's optical interferometer.Interferometer is a research tool that combines two or more light sources to create interference patterns that can be measured and analyzed. In astronomy, interferometers combine the light collected by multiple...

    2024-01-05
    See translation
  • Outstanding Optical Technologies at the 2025 Western Optoelectronics Exhibition in the United States

    In the long history of technological development, every major breakthrough in technology is like a shining star, illuminating the path forward for humanity. At the Photonics West conference in 2025, numerous breakthroughs in cutting-edge photonics technologies attracted the attention of the global academic and industrial communities. Several important technological advancements reported in this ex...

    02-12
    See translation
  • Unlocking visible femtosecond fiber oscillators: progress in laser science

    The emergence of ultrafast laser pulses marks an important milestone in laser science, triggering astonishing progress in a wide range of disciplines such as industrial applications, energy technology, and life sciences. Among various laser platforms that have been developed, fiber optic femtosecond oscillators are highly praised for their compact design, excellent performance, and cost-effectiven...

    2024-03-28
    See translation