English

Progress has been made in the research of phase modulation of terahertz programmable metasurfaces based on free carrier plasmonic dispersion effect

1182
2024-07-26 14:33:32
See translation

Recently, the team of Situ Guohai and Guo Jinying from the Aerospace Laser Technology and Systems Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, and the School of Microelectronics at Shanghai University collaborated to propose a terahertz phase controlled programmable metasurface design scheme based on free carrier plasma dispersion effect. The related research results were published in Applied Physics Letters under the title "Terahertz programmable metasurface for phase modulation based on free carrier plasma dispersion effect".

Terahertz modulators have broad application prospects in fields such as terahertz intelligent communication and computational imaging. However, existing terahertz phase modulators are not satisfactory in terms of speed, efficiency, and flux. Therefore, there is an urgent need to develop high-speed, efficient, and high-throughput terahertz spatial light modulators.

The research team proposed a terahertz programmable metasurface design scheme based on the free carrier plasmonic dispersion effect. By integrating the pn junction into the "H" - shaped metal metasurface unit structure and utilizing the change in external voltage to alter the carrier concentration distribution of the pn junction, continuous phase control at a frequency of 0.4 THz and 270 ° with an average efficiency of 30% were achieved in simulation. The metasurface unit adopts a "MIM" structure, and each unit is independently adjustable, while utilizing the high-speed switching characteristics of the pn junction, which is expected to achieve GHz level control speed. The team also demonstrated the far-field radiation results of the metasurface unit array, with a peak sidelobe ratio of 13dB, demonstrating excellent beam steering performance. The high-speed, efficient, and high-throughput advantages demonstrated by this design scheme in terahertz phase modulation are expected to play an important role in terahertz communication and imaging fields.

Figure 1. Schematic diagram of programmable metasurface unit structure and beam steering function

Figure 2. Continuous phase modulation of metasurface units under voltage

This research achievement has received support from the National Natural Science Foundation of China, the Shanghai Academic Research Leader Project, and the Shanghai Municipal Science and Technology Major Project.

Source: Shanghai Institute of Optics and Fine Mechanics

Related Recommendations
  • Oxford University Tokamak Energy Company develops laser technology for fusion power plants

    Tokamak Energy is currently developing a new laser measurement technology for controlling extreme conditions inside fusion power plants.The laser based dispersion interferometer system is being tested at the company's headquarters in Oxford and will be installed on its world record breaking fusion machine ST40 later this year.Clean, safe, and renewable nuclear fusion power generation occurs inside...

    2024-03-14
    See translation
  • AMS OSRAM launches new five junction laser

    Autonomous driving relies on sensors to provide precise, reliable, and long-range environmental perception at high frequencies per second. Lidar, as a key sensing technology, can capture high-precision 3D environmental information in real time without being affected by lighting conditions, thereby empowering safe and real-time decision-making. To improve the performance of LiDAR systems, ams OSRAM...

    11-10
    See translation
  • High Power Laser Assists Scientists in Discovering a New Stage of High Density and Ultra High Temperature Ice

    As is well known, the outer planets of our solar system, Uranus and Neptune, are gas giants rich in water. The extreme pressure on these planets is 2 million times that of the Earth's atmosphere. Their interiors are also as hot as the surface of the sun. Under these conditions, water exhibits a strange high-density ice phase.Researchers have recently observed one of the stages, called Ice XIX, whi...

    2023-10-11
    See translation
  • Pensievision Wins Luminate NY OPI Accelerator Competition

    New York Governor Kathy Hochul announced last week that Pensievision emerged as the winner of the eighth cohort of the Luminate NY Optics, Photonics, and Imaging (OPI) Startup Accelerator Competition. The San Diego, California-based company was honored as the “Company of the Year” at the Luminate NY 2025 Finals held in Rochester on October 22. The finals were part of SPIE Optifab, the annual confe...

    10-31
    See translation
  • New two-photon aggregation technology significantly reduces the cost of femtosecond laser 3D printing

    Scientists at Purdue University in the United States have developed a new type of two-photon polymerization technology. This technology cleverly combines two lasers and utilizes 3D printing technology to print complex high-resolution 3D structures while reducing femtosecond laser power by 50%. It helps to reduce the cost of high-resolution 3D printing technology, thereby further expanding its appl...

    2024-07-05
    See translation