English

Meltio launches a new blue laser 3D printer M600

162
2024-07-06 10:25:58
See translation

Recently, metal 3D printing manufacturer Meltio launched its latest metal 3D printer - M600. This M600 has shown significant progress in integrating into industrial manufacturing processes, no longer limited to niche applications.

 



Like most of Meltio's product lines, the design of M600 was originally intended to address common manufacturing issues such as long delivery times, high inventory costs, and fragile supply chains. For this purpose, the Meltio M600 aims to improve productivity, reduce costs, and achieve internal component production, thereby making the manufacturing process more robust.

Lukas Hoppe, the R&D director of Meltio, stated at a press conference that the design task of the new Meltio M600 is to envision a perfect 3D printer suitable for machining workshops.

3D printing has enormous potential to reduce delivery time and manufacturing dependence through internal printing of parts, reduce warehouse inventory, as raw materials can be converted into final parts on demand, and reduce costs by only using materials where needed

Blue light environmental protection new trend, more cost-effective
Unlike traditional 3D printing technology, Meltio's M600 uses wire laser metal deposition. This process is similar to laser welding, allowing machines to easily print simple or complex metal structures.

Hope pointed out, "Our goal is to strike a balance between machine size, cost, and productivity for the Meltio M600, while not compromising quality, reliability, and ease of use."

The M600 uses wire as the material, which is safer, more cost-effective, and reduces the risk of pollution. The wire is bombarded by high-power laser in the print head, achieving precise and controllable metal deposition.

However, the difference between M600 and Meltio's other metal 3D printers is that it uses cutting-edge blue light laser technology. This innovation not only improves printing speed but also reduces required energy, making it particularly suitable for materials that challenge infrared lasers, such as copper and aluminum alloys.

The use of blue light laser technology and wire not only improves operational efficiency, but also reduces the carbon footprint of the production process, meeting the growing demand for sustainable manufacturing.

Leading the Revolution of Metal 3D Printing
The design features of M600 include a spacious (300x400x600mm) fully inert workspace that can handle various materials such as titanium, copper, aluminum alloys, stainless steel, tool steel, nickel, invar alloys, and Inconel.

This 3D printer also features a built-in workpiece fixing solution and a three-axis touch probe, adding versatility.

The design of M600 prioritizes autonomous operation, reducing operator intervention and meeting the demand for reliable and continuous production in industrial manufacturing.

Meltio's M600 is an important step in making metal additive manufacturing a viable and competitive option for various industrial applications.
It improves material processing, production efficiency, and operational integration, opening up opportunities for the wider adoption of 3D printing technology in industries such as automotive, aerospace, oil and gas, mining, and defense.

Source: OFweek

Related Recommendations
  • A professor from Sun Yat sen University proposes a new clean energy technology for laser manufacturing

    Energy conversion technology is an important research direction in modern science and engineering. Scientists are exploring new catalytic chemical methods to achieve the conversion of energy chemicals, such as photocatalysis and electrocatalysis. However, these highly anticipated catalytic chemistry technologies still have some problems in practical applications, and there is still a certain dista...

    2024-06-13
    See translation
  • Shanghai Optical and Mechanical Institute has made progress in ultra-low threshold Rydberg state single mode polariton lasers based on symmetric engineering

    Recently, the research team of Dong Hongxing and Zhang Long from the Research Center of Infrared Optical Materials of the Chinese Academy of Sciences Shanghai Institute of Optics and Precision Mechanics, in cooperation with Huazhong University of Science and Technology, reported a new mechanism for generating dynamically tunable single-mode lasers from exciton polaritons with ultra-low thresholds,...

    2023-10-12
    See translation
  • Xi'an Institute of Optics and Fine Mechanics has made new progress in the research of attosecond high spatiotemporal resolution imaging

    The attosecond light source has the characteristics of ultra short pulse width, short wavelength, high coherence, and high-precision synchronous control, and has extremely high potential for application in the field of ultrafast imaging. Especially when the attosecond light source reaches the "water window" band, oxygen and hydrogen atoms have weak absorption of X-rays in this band, so water is re...

    2024-10-14
    See translation
  • What is field assisted additive manufacturing?

    Dr. Tan Chaolin from the Singapore Institute of Manufacturing Technology, in collaboration with China University of Petroleum, Shanghai Jiao Tong University, Princeton University, University of Malta, Huazhong University of Science and Technology (Professor Zhang Haiou), University of California, Irvine, Hunan University, and EPM Consulting, published an article titled "Review on Field Assisted Me...

    2024-07-29
    See translation
  • LOTMAXX Announces the Launch of a Multifunctional 3D Printer with Laser Cutting Function

    LOTMAXX has announced the launch of the ET model, a new type of 3D printer that can also be used as a laser cutting machine. According to the manufacturer, the core component is a fast direct extruder with a printing speed of up to 500 millimeters per second.LOTMAXX ET features an all metal casing with a printing volume of 250 x 250 x 265 mm. According to the announcement, as a special feature, th...

    2023-11-09
    See translation