English

Photon chips help drones fly unobstructed in weak signal areas

1291
2023-10-28 09:58:39
See translation

With funding from the National Science Foundation of the United States, researchers at the University of Rochester are developing photonic chips that use quantum technology called "weak value amplification" to replace mechanical gyroscopes used in drones, enabling them to fly in areas where GPS signals are obstructed or unavailable.

Using this quantum technology, scientists aim to provide the same sensitivity level as large optical gyroscopes on small handheld photonic chips, which may alter the navigation of drones.

Jaime Cardenas, an associate professor at the Institute of Optics, has received a new National Science Foundation grant to develop this chip by 2026.

Cardenas stated that the fiber optic gyroscopes currently used on the most advanced drones include several kilometers of fiber optic spools or have limited dynamic range.

At present, the sensitivity and stability of gyroscopes must be fundamentally balanced between their size and weight. As unmanned aerial vehicles, drones, and satellites become smaller and more common, the demand for ultra compact navigation level gyroscopes will become crucial. The most advanced micro gyroscopes are compact and sturdy, but their performance is insufficient, which hinders their application in navigation.

According to Cardenas, weak amplification has more advantages than traditional methods because it can enhance the interference measurement signal without the cost of amplifying several forms of technical noise. But the previous weak amplification demonstration required complex laboratory settings and precise calibration; Cardenas is committed to achieving weak amplification on micro photonic chips using high-quality factor ring resonators.

Cardenas' collaborators in this project include physicist Andrew Jordan, who was a former faculty member at the University of Rochester and currently works at Chapman University. Cardenas stated that he will also collaborate with the David T. Kearns Leadership and Diversity Center at the university to expand the participation of underrepresented groups and stimulate their desire for STEM careers through research experience with high school students in the Rochester City school district.

Source: OFweek

Related Recommendations
  • Using attosecond pulses to reveal new information about the photoelectric effect

    Scientists from the Stanford National Accelerator (SLAC) laboratory of the US Department of Energy have revealed new information about the photoelectric effect using attosecond pulses: the delay time of photoelectric emission is as long as 700 attosecond, far exceeding previous expectations. The latest research challenges existing theoretical models and helps to reveal the interactions between ele...

    2024-09-02
    See translation
  • Theoretical physicist Farok Miwivar studied the interaction between two sets of luminescent atoms in a quantum cavity

    Theoretical physicist Farok Miwivar studied the interaction between two sets of luminescent atoms in a quantum cavity - a quantum cavity is an optical device composed of two excellent small mirrors that can capture light in a small area for a long time.This model and its predictions can be used for the next generation of superradiance lasers. They can be used and observed in cutting-edge cavity/wa...

    2024-02-21
    See translation
  • The physicist who built the ultrafast "attosecond" laser won the Nobel Prize

    Pierre Agostini, Ferenc Krausz, and Anne L'Huillier won the award for their ultra short optical pulses, which made close research on electrons possible.Ferenc Klaus, Anne Lullier, and Pierre Agostini (from left to right)Image sources: BBVA Foundation, Kenneth Ruona/Lund University, Ohio State UniversityThis year's Nobel Prize in Physics was awarded to three physicists - Pierre Agostini of Ohio St...

    2023-10-09
    See translation
  • Lumiotive Launches New LiDAR Sensor LM10

    Recently, optical semiconductor developer Lumiotive, headquartered in Seattle, USA, launched a new LiDAR sensor LM10, which is its first fully produced product of light controlled metasurface (LCM) technology designed for digital beam steering.The developers stated that compared to mechanical systems, their digital beam steering method overcomes the limitations of traditional LiDAR sensors in term...

    2023-09-02
    See translation
  • A US research team has developed a new type of photonic memory computing device

    Recently, a research team from the University of California, Santa Barbara has successfully developed a new type of photonic memory computing device that integrates non reciprocal magneto-optical technology. This device achieves high-speed, high-energy efficiency, and ultra-high durability photon computing by utilizing the non reciprocal phase shift phenomenon. The research findings, titled "Integ...

    2024-10-24
    See translation