English

Photon chips help drones fly unobstructed in weak signal areas

1184
2023-10-28 09:58:39
See translation

With funding from the National Science Foundation of the United States, researchers at the University of Rochester are developing photonic chips that use quantum technology called "weak value amplification" to replace mechanical gyroscopes used in drones, enabling them to fly in areas where GPS signals are obstructed or unavailable.

Using this quantum technology, scientists aim to provide the same sensitivity level as large optical gyroscopes on small handheld photonic chips, which may alter the navigation of drones.

Jaime Cardenas, an associate professor at the Institute of Optics, has received a new National Science Foundation grant to develop this chip by 2026.

Cardenas stated that the fiber optic gyroscopes currently used on the most advanced drones include several kilometers of fiber optic spools or have limited dynamic range.

At present, the sensitivity and stability of gyroscopes must be fundamentally balanced between their size and weight. As unmanned aerial vehicles, drones, and satellites become smaller and more common, the demand for ultra compact navigation level gyroscopes will become crucial. The most advanced micro gyroscopes are compact and sturdy, but their performance is insufficient, which hinders their application in navigation.

According to Cardenas, weak amplification has more advantages than traditional methods because it can enhance the interference measurement signal without the cost of amplifying several forms of technical noise. But the previous weak amplification demonstration required complex laboratory settings and precise calibration; Cardenas is committed to achieving weak amplification on micro photonic chips using high-quality factor ring resonators.

Cardenas' collaborators in this project include physicist Andrew Jordan, who was a former faculty member at the University of Rochester and currently works at Chapman University. Cardenas stated that he will also collaborate with the David T. Kearns Leadership and Diversity Center at the university to expand the participation of underrepresented groups and stimulate their desire for STEM careers through research experience with high school students in the Rochester City school district.

Source: OFweek

Related Recommendations
  • Screen Innovation Launches Short Focus Elevated Electric Laser TV Projection Screen

    Screen Innovations has added a short focal lift electric screen solution to its component and material series, meeting the growing demand for large but hidden displays in small media rooms and company boards.Unlike traditional projection systems that require sufficient distance from the projector to the screen or perform best in a darkroom, pop-up laser TVs are only a few inches away from short fo...

    2023-10-27
    See translation
  • The Mysteries of Atmospheric Chemistry: Transient Absorption Spectroscopy Study Using FERGIE

    backgroundDr. Daniel Stone's research team from the University of Leeds in the UK is primarily focused on the study of oxidation reactions in the atmosphere and combustion processes. Dr. Stone is particularly interested in the chemical reaction processes of active substances that can control atmospheric composition and fuel combustion processes, such as hydroxide (OH), peroxide (HO2), and Crigee i...

    2024-03-06
    See translation
  • Tescan expands semiconductor workflow using femtosecond laser technology

    Tescan releases its next-generation femtosecond laser platform, FemtoChisel, expanding its semiconductor product portfolio. This platform is committed to improving the speed, accuracy, and quality of sample preparation, and will officially debut at the ISTFA exhibition in 2025. FemtoChisel was developed specifically for semiconductor research and failure analysis environments where both throughp...

    11-20
    See translation
  • Using attosecond pulses to reveal new information about the photoelectric effect

    Scientists from the Stanford National Accelerator (SLAC) laboratory of the US Department of Energy have revealed new information about the photoelectric effect using attosecond pulses: the delay time of photoelectric emission is as long as 700 attosecond, far exceeding previous expectations. The latest research challenges existing theoretical models and helps to reveal the interactions between ele...

    2024-09-02
    See translation
  • Beijing Institute of Technology has made significant progress in the study of ultrafast carrier dynamics in optoelectronic functional crystals

    Recently, teachers and students from the Institute of Solid State Laser and Ultrafast Photonics at the School of Physics and Optoelectronic Engineering have made significant progress in the study of ultrafast carrier dynamics in optoelectronic functional crystals. The related research results are titled "Anisotropic carrier dynamics and laser fabricated luminosity patterns on oriented single cryst...

    2024-02-21
    See translation